基于 GCN 和 CIL 的端到端自动驾驶换道方法

Yanzhi Lü, Chao Wei*, Yuanhao He

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

For the lane change of autonomous driving, to solve the problems of unstable output and difficulty to extract dynamic interactive scene feature in conventional end-to-end method, an end-to-end learning method for autonomous lane change based on graph convolutional network(GCN)and conditional imitation learning(CIL)is proposed in this paper. Firstly, the dynamic interactive information of driving scenarios is aggregated in the form of graph-structured data. Secondly, the driving behavior instructions that the ego vehicle should take are output through GCN, which is then combined with CIL. The driving instructions output by GCN are taken as high-level commands for guiding CIL, and are finally mapped to underlying control actions of the vehicle with other perception data to complete autonomous lane change without collision. Experimental verification is carried out on CARLA simulation platform. The experimental results prove that the performance of this method is better than that of conventional end-to-end method, and it has better success rate and generalization performance.

投稿的翻译标题An End-to-End Lane Change Method for Autonomous Driving Based on GCN and CIL
源语言繁体中文
页(从-至)2310-2317
页数8
期刊Qiche Gongcheng/Automotive Engineering
45
12
DOI
出版状态已出版 - 10 12月 2023

关键词

  • conditional imitation learning
  • end-to-end driving
  • graph convolutional network
  • intelligent vehicle
  • lane change

指纹

探究 '基于 GCN 和 CIL 的端到端自动驾驶换道方法' 的科研主题。它们共同构成独一无二的指纹。

引用此