职 称
教授
R博导 R硕导
学院及专业
机械与车辆学院
办公地址
发动机实验室东楼209
邮 编
100081
邮 件
hwu@bit.edu.cn
能源与动力工程系 系主任
主持JW科技委、国防KGJ、国家自然科学基金委等部门资助的项目20余项。
[1].JW科技委173重点项目 “XXX动力系统基础研究”,2022.11-2027.11,在研,首席/主持;
[2].ZF重大型号工程“XXX柴油机研制”,2022.01-2024.12,在研,总体设计负责人;
[3].JW科技委重大创新工程项目子课题,“XXX柔性高效热力循环与可控燃烧技术研究”,2021-(滚动支持),主持;
[4].国家自然科学基金叶企孙联合基金 “XXX高效高密度燃烧机制”项目课题,2023.01-2026.12,在研,主持;
[5].国家自然科学基金面上项目,“高密度环境柴油喷雾超临界态输运混合及着火机理研究”,2022.01-2025.12,在研,主持;
[6].JW科技委173重点项目专题,“XXX转子发动机重油夹气喷射供油系统研究”,2021.03-2022.09,结题,主持;
[7].国家自然科学基金青年项目,“基于自由基发展历程解析的柴油低温着火冷热焰演化机理研究”,2019.01-2021.12,结题,主持;
[8].北京理工大学“优青”培育项目,“极寒环境柴油机燃烧控制”,2019.01-2021.12,主持;
[9].KGJ基础产品创新项目课题,“XXX柴油机烧蚀机理研究”,2018.01-2021.12,结题,主持;
[10]. JW科技委173重点项目专题,“XXX喷雾特性及初始火焰发展规律研究”,2018.01-2022.12,结题,主持;
[11]. 科技部国家重点研发计划项目子课题,“混合动力专用发动机设计过程技术决策及优化模型开发”, 2017.09-2021.09,结题,主持。
以第一/通讯作者发表论文100余篇,其中SCI论文60余篇,谷歌学术h因子26,获大会优秀论文奖7篇,以第一发明人授权发明专利30余项、软件著作权5项。近期SCI检索论文如下:
[1]. Yaquan Ai, Han Wu*, Vladimir Markov, Jianhui Zhao, Xiangrong Li. Impact of fuel properties on the transition of liquid-gas interface dynamics under supercritical pressure. Combustion and Flame 257(2023) 113005.
[2]. Han Wu, Yaqing Bo, Peng Xiao, Zhicheng Shi*, Xiangrong Li. Effect mechanism and quantitative analysis of injector faults on diesel engine performance. Applied Thermal Engineering 236(2023) 121559.
[3]. Guixian Zhang, Han Wu*, Zhikun Cao, Xiangrong Li, Leonid Myagkov. Coupling effect of thermal conducting and lowtemperature reaction process on ignition characteristics under diesel-like conditions. Fuel 340 (2023) 127533.
[4]. Yaquan Ai, Han Wu*, Vladimir Markov, Jianhui Zhao, Xiangrong Li. Investigation of supercritical transition and evaporation process of a hydrocarbon droplet under diesel engine-relevant conditions, Fuel 338 (2023) 127288.
[5]. Han Wu, Zhicheng Shi, et al. Research on destructive knock combustion mechanism of heavy-duty diesel engine at low temperatures. Combustion Science and Technology 2022: https://doi.org/10.1080/00102202.2022.2156790.
[6]. Z. Cao, H. Wu*, R. Zhao, Haohan Wang, Zhicheng Shi, Guixian Zhang, Xiangrong Li. Numerical study on the wall-impinging diesel spray soot generation and oxidation in the cylinder under cold-start conditions of a diesel engine, Chemosphere, 2022, 209, 136619.
[7]. Z. Cao, H. Wu*, Zhen Chen, Peng Xiao, Zhen Hu, Xiangrong Li. Numerical investigation of component coupling effect on soot forming under low temperature condition, Fuel, 2022, 330, 125630.
[8]. Han Wu, Zeyu Zhang, Yaozong Li, Zhicheng Shi, Weifan Che, Xiangrong Li. Energy conversion path improvement by optimizing motion profile on a two-stroke rod-less opposed pistons engine. Energy Conversion and Management 2022-268-116052.
[9]. Han Wu, Xinyi Dong, Zhicheng Shi, Haiying Li, Sheng Miao, Weiren Cao, Yaqing Bo, Lu Zhang, Xiangrong Li. Evolution mechanism of diesel ignition with injection pressure under different spray wet-wall conditions at low temperatures. FUEL, 330(2022)125629.
[10]. WU H*, Zhang Z, Zhu D, et al. Spray entrainment coefficient modeling for high injection pressure based on entrainment velocity and force analysis. Journal of Fluids Engineering, 2022, 144,101401-1.
[11]. Wang N, Dong X, Liu Y, Zhang S, WU H*, et al. Effects of CO2 on the laminar burning velocities of toluene reference fuel (TRF) with increasing initial temperatures and pressures. Fuel, 2022,318,123508.
[12]. Bo Y, WU H*, Hernández J, et al. Numerical study of wall-impinging ignition at different wall distances for cold start of heavy-duty diesel engine. Applied Thermal Engineering, 2022, 212, 118535.
[13]. Bo Y, WU H*, Xiao P, et al. Numerical study on the effect of multiple injection strategies on ignition processes for low-temperature diesel spray. Fuel, 2022, 324, 124697.
[14]. Wu H, Dong X, Shi Z, et al. Effect of injection timing on knock combustion and pollutant emission of heavy-duty diesel engines at low temperatures. Chemosphere 2022, 305: 135519.
[15]. Wu H, Sun L, Shi Z, et al. Effect of wall parameters on impinging combustion and soot emission characteristics of heavy-duty diesel engine at low temperature. Chemosphere 2022; 306: 135568.
[16]. Zhu D, Zhao R, Wu H*, et al. Experimental study on combustion and emission characteristics of diesel engine with high supercharged condition. Chemosphere 2022; 304: 135336. BIT66
[17]. Wu H, Cao W, Li H, et al. Study on impinging ignition and wall-attached fuel film combustion characteristics of light- to heavy-duty diesel engines at low temperatures. Fuel, 2022, 313: 123065.
[18]. Li Y, Wu H*, Liu Y, et al. Study on Engine Performance and Combustion System Optimization of a Poppet-Valve Two-Stroke Diesel Engine. Energies, 2022, 15, 3685.
[19]. Wu H, Zheng J, Dong X, et al. Investigations on the cellular instabilities of expanding hydrogen/methanol spherical flame. International Journal of Hydrogen Energy, 2021, doi.org/10.1016/j.ijhydene.2021.07.194.
[20]. Wu H, Liu C, Tang L, et al. Inhibition of the Wall-attached Fuel Combustion and the Formation of Aerosol Particle. Aerosol and Air Quality Research, 2021, 21: 210138.
[21]. Wu H, Cao W, Li H, et al. Wall Temperature Effects on Ignition Characteristics of Liquid-phase Spray Impingement for Heavy-duty Diesel Engine at Low Temperatures. Combustion Science and Technology, 2021: 1-16.
[22]. Shi Z, Wu H*, Li H, et al. Effect of injection pressure and fuel mass on wall-impinging ignition and combustion characteristics of heavy-duty diesel engine at low temperatures. Fuel, 2021, 299: 120904.
[23]. Bo Y, Liu F, Wu H*, et al. A numerical investigation of injection pressure effects on wall-impinging ignition at low-temperatures for heavy-duty diesel engine. Applied Thermal Engineering, 2021, 184: 116366.
[24]. Wu H, Hu Z, Dong X, et al. Numerical Investigation of Negative Temperature Coefficient Effects on Sooting Characteristics in a Laminar Co-flow Diffusion Flame. ACS omega, 2021.doi.org/10.1021/acsomega.1c01397.
[25]. Hua Y, Liu F, Wu H*, et al. Effects of alcohol addition to traditional fuels on soot formation: a review. International Journal of Engine Research, 2021, 22(5): 1395-1420.
2015 年,联合国成员国同意 17 项可持续发展目标 (SDG),以消除贫困、保护地球并确保全人类的繁荣。此人的工作有助于实现下列可持续发展目标: