TY - JOUR
T1 - Whole-genome-based survey for polyphyletic serovars of salmonella enterica subsp. Enterica provides new insights into public health surveillance
AU - Yin, Zhiqiu
AU - Liu, Jiaheng
AU - Du, Binghai
AU - Ruan, Hai Hua
AU - Huo, Yi Xin
AU - Du, Yuhui
AU - Qiao, Jianjun
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Serotyping has traditionally been considered the basis for surveillance of Salmonella, but it cannot distinguish distinct lineages sharing the same serovar that vary in host range, pathogenicity and epidemiology. However, polyphyletic serovars have not been extensively investigated. Public health microbiology is currently being transformed by whole-genome sequencing (WGS) data, which promote the lineage determination using a more powerful and accurate technique than serotyping. The focus in this study is to survey and analyze putative polyphyletic serovars. The multi-locus sequence typing (MLST) phylogenetic analysis identified four putative polyphyletic serovars, namely, Montevideo, Bareilly, Saintpaul, and Muenchen. Whole-genome-based phylogeny and population structure highlighted the polyphyletic nature of Bareilly and Saintpaul and the multi-lineage nature of Montevideo and Muenchen. The population of these serovars was defined by extensive genetic diversity, the open pan genome and the small core genome. Source niche metadata revealed putative existence of lineage-specific niche adaptation (host-preference and environmental-preference), exhibited by lineage-specific genomic contents associated with metabolism and transport. Meanwhile, differences in genetic profiles relating to virulence and antimicrobial resistance within each lineage may contribute to pathogenicity and epidemiology. The results also showed that recombination events occurring at the H1-antigen loci may be an important reason for polyphyly. The results presented here provide the genomic basis of simple, rapid, and accurate identification of phylogenetic lineages of these serovars, which could have important implications for public health.
AB - Serotyping has traditionally been considered the basis for surveillance of Salmonella, but it cannot distinguish distinct lineages sharing the same serovar that vary in host range, pathogenicity and epidemiology. However, polyphyletic serovars have not been extensively investigated. Public health microbiology is currently being transformed by whole-genome sequencing (WGS) data, which promote the lineage determination using a more powerful and accurate technique than serotyping. The focus in this study is to survey and analyze putative polyphyletic serovars. The multi-locus sequence typing (MLST) phylogenetic analysis identified four putative polyphyletic serovars, namely, Montevideo, Bareilly, Saintpaul, and Muenchen. Whole-genome-based phylogeny and population structure highlighted the polyphyletic nature of Bareilly and Saintpaul and the multi-lineage nature of Montevideo and Muenchen. The population of these serovars was defined by extensive genetic diversity, the open pan genome and the small core genome. Source niche metadata revealed putative existence of lineage-specific niche adaptation (host-preference and environmental-preference), exhibited by lineage-specific genomic contents associated with metabolism and transport. Meanwhile, differences in genetic profiles relating to virulence and antimicrobial resistance within each lineage may contribute to pathogenicity and epidemiology. The results also showed that recombination events occurring at the H1-antigen loci may be an important reason for polyphyly. The results presented here provide the genomic basis of simple, rapid, and accurate identification of phylogenetic lineages of these serovars, which could have important implications for public health.
KW - Antimicrobial resistance
KW - Niche-specific adaptation
KW - Pathogenicity
KW - Polyphyletic serovar
KW - Public health surveillance
KW - Salmonella
KW - Serotyping
UR - http://www.scopus.com/inward/record.url?scp=85088595841&partnerID=8YFLogxK
U2 - 10.3390/ijms21155226
DO - 10.3390/ijms21155226
M3 - Article
C2 - 32718035
AN - SCOPUS:85088595841
SN - 1661-6596
VL - 21
SP - 1
EP - 19
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 15
M1 - 5226
ER -