TY - JOUR
T1 - Understanding point-of-use tap water quality
T2 - From instrument measurement to intelligent analysis using sample filtration
AU - Su, Zhaoyang
AU - Liu, Ting
AU - Men, Yujie
AU - Li, Shuo
AU - Graham, Nigel
AU - Yu, Wenzheng
N1 - Publisher Copyright:
© 2022
PY - 2022/10/15
Y1 - 2022/10/15
N2 - In most cases, point-of-use tap water quality is not routinely monitored due to widely-dispersed sampling sites and the costly tests. Although previous studies have revealed the variation of drinking water quality during distribution in municipal networks, the influence of aging pipes in buildings on quality is still unknown and this makes it difficult for water utilities to conduct regular maintenance. Herein, we have undertaken a survey of tap water samples across 8 districts in Beijing (China) to evaluate the potential effects of pipe age on point-of-use water quality, including turbidity, organic matter characteristics, and bacterial community. By grouping the collected samples according to the pipe age and source water respectively, the results suggested that bacterial diversity is significantly influenced by the pipe age. However, bacterial community structure is clearly influenced by the source water. Similarly, aging pipes in buildings are also responsible for the deterioration of the final water quality, and their effects have been closely linked to selected water quality parameters by evaluating the relevant factors. Moreover, the interrelationships between physico-chemical parameters and bacteria abundance were identified. For example, pH, Ca2+, Mg2+, Na+ and K+ showed a positive relationship with Bacillus abundance. In addition, an intelligent analysis method for understanding pipe age, organic matter concentration, and hardness (i.e., Ca2+ and Mg2+ concentration), based on image analysis of filtered membranes has been developed. The accuracy of prediction was encouraging, but can be improved with the collection of more data from tap water samples. We expect that this method can be exploited by the public to monitor their tap water and provide a feasible and cost-effective approach for water suppliers to locate aging/deteriorating pipes which need to be replaced or maintained.
AB - In most cases, point-of-use tap water quality is not routinely monitored due to widely-dispersed sampling sites and the costly tests. Although previous studies have revealed the variation of drinking water quality during distribution in municipal networks, the influence of aging pipes in buildings on quality is still unknown and this makes it difficult for water utilities to conduct regular maintenance. Herein, we have undertaken a survey of tap water samples across 8 districts in Beijing (China) to evaluate the potential effects of pipe age on point-of-use water quality, including turbidity, organic matter characteristics, and bacterial community. By grouping the collected samples according to the pipe age and source water respectively, the results suggested that bacterial diversity is significantly influenced by the pipe age. However, bacterial community structure is clearly influenced by the source water. Similarly, aging pipes in buildings are also responsible for the deterioration of the final water quality, and their effects have been closely linked to selected water quality parameters by evaluating the relevant factors. Moreover, the interrelationships between physico-chemical parameters and bacteria abundance were identified. For example, pH, Ca2+, Mg2+, Na+ and K+ showed a positive relationship with Bacillus abundance. In addition, an intelligent analysis method for understanding pipe age, organic matter concentration, and hardness (i.e., Ca2+ and Mg2+ concentration), based on image analysis of filtered membranes has been developed. The accuracy of prediction was encouraging, but can be improved with the collection of more data from tap water samples. We expect that this method can be exploited by the public to monitor their tap water and provide a feasible and cost-effective approach for water suppliers to locate aging/deteriorating pipes which need to be replaced or maintained.
KW - Bacterial communities
KW - Membrane filters
KW - Pipe age
KW - Point-of-use
KW - Tap water
KW - Water quality
UR - http://www.scopus.com/inward/record.url?scp=85139276125&partnerID=8YFLogxK
U2 - 10.1016/j.watres.2022.119205
DO - 10.1016/j.watres.2022.119205
M3 - Article
C2 - 36215843
AN - SCOPUS:85139276125
SN - 0043-1354
VL - 225
JO - Water Research
JF - Water Research
M1 - 119205
ER -