Understand Human Walking Through a 2D Inverted Pendulum Model

Linqi Ye, Xuechao Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

This paper gives some macroscopic understandings on human walking about the limitations on walking speed and step length, the reachable region, capture region, and disturbance recovery through a 2D inverted pendulum model. Our concern is the most basic problems in human walking, such as what are the limitations on walking speed and step length, how people change speed during step-to-step transition, and how people prevent a fall. The concept of walking orbit is proposed as a tool to study these problems. It describes the walking motion in the state space under walking constraints, giving us an intuitive way to study human walking during a step and switch between steps. The model has a point mass on the hip and two massless legs. The two dominant control inputs, hip and ankle actuation are idealized into a free determined foot placement and an impulsive push off. Based on this model, some quantitative and qualitative analysis are given, leading to some macroscopic understandings on human walking. Although this paper does not talk about any details on how to realize the control for a real biped robot, it may serve as a helpful guide for biped robot design and control in the future.

Original languageEnglish
Title of host publication2018 IEEE-RAS 18th International Conference on Humanoid Robots, Humanoids 2018
PublisherIEEE Computer Society
Pages340-345
Number of pages6
ISBN (Electronic)9781538672839
DOIs
Publication statusPublished - 2 Jul 2018
Event18th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2018 - Beijing, China
Duration: 6 Nov 20189 Nov 2018

Publication series

NameIEEE-RAS International Conference on Humanoid Robots
Volume2018-November
ISSN (Print)2164-0572
ISSN (Electronic)2164-0580

Conference

Conference18th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2018
Country/TerritoryChina
CityBeijing
Period6/11/189/11/18

Fingerprint

Dive into the research topics of 'Understand Human Walking Through a 2D Inverted Pendulum Model'. Together they form a unique fingerprint.

Cite this