Abstract
This study develops a quantum mechanical model to investigate energy absorption in ultrafast laser of dielectrics. The model investigates the optical property variations, electron temperature, and density changes at femtosecond scales. The ionizations and electron heating are two major factors considered for pulse absorption occurring within the pulse duration. The flux-doubling model is employed to calculate the free electron generation mainly through impact ionization and photoionization. The quantum mechanical treatments are used to account for the specific heat and the relaxation time for free electrons. The time and space dependent optical properties of the dense plasma generated by the ultrafast laser pulse are calculated. The predictions of ablation threshold and ablation depth of fused silica and barium aluminum borosilicate (BBS) are in good agreements with published experimental data. The model greatly improves the accuracy in predicting the ablation depth and can predict the crater shape.
Original language | English |
---|---|
Article number | IMECE2004-59288 |
Pages (from-to) | 389-398 |
Number of pages | 10 |
Journal | American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD |
Volume | 375 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2004 |
Externally published | Yes |
Event | 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE - Anaheim, CA, United States Duration: 13 Nov 2004 → 19 Nov 2004 |