TY - JOUR
T1 - Tribological and Mechanical Applications of Liquid-Crystal-Polymer-Modified Carbon-Fiber-Reinforced Polyamide–Polyurethane Composites
AU - Zhou, Zhen
AU - Wang, Xiaoqing
AU - Li, Xiaomeng
AU - Liu, Chang
AU - Li, Guoping
AU - Luo, Yunjun
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/5
Y1 - 2023/5
N2 - An aromatic copolyester liquid crystal polymer (LCP) was introduced into carbon-fiber-reinforced polyamide–polyurethane (CF/PA-PU) composites through melt blending to improve the tribological properties of the composites. The effects of LCP on the mechanical, processing, and thermal properties of CF/PA-PU composites were compared to those of commonly-used graphite (Gr). The results showed that at 5 wt.% LCP content, the coefficient of friction (COF) was decreased by 16.06%, and the wear rate by 32.22% in the LCP/CF/PA-PU composite compared to the CF/PA-PU composite. Furthermore, using LCP instead of Gr showed significantly improved mechanical properties and reduced processing viscosity. The tensile strength of 5%LCP/CF/PA-PU composite could reach 99.08 MPa, while the equilibrium torque was reduced, being 26.85% higher and 18.37% lower than those of CF/PA-PU composite, respectively. The thermal stability of LCP/CF/PA-PU composites was also enhanced. The addition of 5 wt.% LCP to CF/PA-PU composite increased the initial decomposition temperature by 14.19% compared to CF/PA-PU. In sharp contrast, the addition of Gr increased equilibrium torque and actual processing temperature leading to processing difficulties and instability. This approach offers a novel strategy for tribological applications and tackles the problem of high viscosity in CF/PA-PU composites.
AB - An aromatic copolyester liquid crystal polymer (LCP) was introduced into carbon-fiber-reinforced polyamide–polyurethane (CF/PA-PU) composites through melt blending to improve the tribological properties of the composites. The effects of LCP on the mechanical, processing, and thermal properties of CF/PA-PU composites were compared to those of commonly-used graphite (Gr). The results showed that at 5 wt.% LCP content, the coefficient of friction (COF) was decreased by 16.06%, and the wear rate by 32.22% in the LCP/CF/PA-PU composite compared to the CF/PA-PU composite. Furthermore, using LCP instead of Gr showed significantly improved mechanical properties and reduced processing viscosity. The tensile strength of 5%LCP/CF/PA-PU composite could reach 99.08 MPa, while the equilibrium torque was reduced, being 26.85% higher and 18.37% lower than those of CF/PA-PU composite, respectively. The thermal stability of LCP/CF/PA-PU composites was also enhanced. The addition of 5 wt.% LCP to CF/PA-PU composite increased the initial decomposition temperature by 14.19% compared to CF/PA-PU. In sharp contrast, the addition of Gr increased equilibrium torque and actual processing temperature leading to processing difficulties and instability. This approach offers a novel strategy for tribological applications and tackles the problem of high viscosity in CF/PA-PU composites.
KW - fiber-reinforced composites
KW - graphite
KW - liquid crystal polymer
KW - tribological properties
UR - http://www.scopus.com/inward/record.url?scp=85159319719&partnerID=8YFLogxK
U2 - 10.3390/polym15092033
DO - 10.3390/polym15092033
M3 - Article
AN - SCOPUS:85159319719
SN - 2073-4360
VL - 15
JO - Polymers
JF - Polymers
IS - 9
M1 - 2033
ER -