Tightly-Coupled Perception and Navigation of Heterogeneous Land-Air Robots in Complex Scenarios

Yufeng Yue*, Mingxing Wen, Yosmar Putra, Meiling Wang, Danwei Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

In unstructured and unknown environments, heterogeneous robots must be able to perceive the environment, coordinate with each other and complete tasks collaboratively with onboard sensors. In this paper, a tightly-coupled perception and navigation framework is proposed for heterogeneous land-air robots, which forms a closed loop of perception-navigation for heterogeneous robots. The key novelty of this work is the proposing of a unified framework to formulate the cooperative mapping and navigation problem, as well as the derivation of high-level coordination strategy and low-level goal-oriented navigation within a fully integrated approach. To provide a comprehensive understanding of the environment, a flexible probabilistic map fusion algorithm is applied to merge local maps generated by hybrid robots. The proposed UAV-UGV hybrid system is validated in challenging experiments, proving its robustness and effectiveness in practical tasks.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10052-10058
Number of pages7
ISBN (Electronic)9781728190778
DOIs
Publication statusPublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

Fingerprint

Dive into the research topics of 'Tightly-Coupled Perception and Navigation of Heterogeneous Land-Air Robots in Complex Scenarios'. Together they form a unique fingerprint.

Cite this