TY - JOUR
T1 - Theoretical prediction of nanomolar and sequence-selective binding of synthetic supramolecular cucurbit[7]uril to N-terminal Leu-containing tripeptides
AU - Zhao, Ying
AU - Li, Fei
AU - Ma, Fenfen
AU - Zhi, Junge
AU - Wu, Guanglu
AU - Zheng, Xiaoyan
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023/2/18
Y1 - 2023/2/18
N2 - Molecular recognition towards peptides and proteins with high affinity by synthetic supramolecular hosts is important but challenging. In this work, we investigate the molecular recognition of the synthetic cucurbit[7]uril (CB[7]) to 17 designed N-terminal Leu-containing tripeptides in aqueous medium by molecular dynamics (MD) simulation and screen out tripeptides with high binding affinity. It is found that, compared to LGG, only the third residue is Arg (R), the binding affinity of CB[7] to LGR reaches nanomolar level with binding equilibrium constant (Ka) of 1.1 × 109 M−1. The CB[7] recognition to the N-terminal Leu-containing tripeptides is highly sequence dependent; whether changing the sequence order (from LGR to LRG) or increasing the sequence length (from LGR to LGGR), Ka decreases by about three orders of magnitude. Interestingly, substituting N-terminal Leu for its isomer Ile, the binding of CB[7] to tripeptides weakens significantly with Ka decreasing by 3-8 orders of magnitude. Thus CB[7] can effectively distinguish N-terminal Leu-containing tripeptides from N-terminal Ile-containing tripeptides. Importantly, we predict that when R is as C-terminus, regardless of N-terminal residue being of aromatic type or Leu, the binding strength is always close to the nanomolar level. Therefore, R can be introduced to rationally design novel peptides with high binding affinity to CB[7] in practical applications.
AB - Molecular recognition towards peptides and proteins with high affinity by synthetic supramolecular hosts is important but challenging. In this work, we investigate the molecular recognition of the synthetic cucurbit[7]uril (CB[7]) to 17 designed N-terminal Leu-containing tripeptides in aqueous medium by molecular dynamics (MD) simulation and screen out tripeptides with high binding affinity. It is found that, compared to LGG, only the third residue is Arg (R), the binding affinity of CB[7] to LGR reaches nanomolar level with binding equilibrium constant (Ka) of 1.1 × 109 M−1. The CB[7] recognition to the N-terminal Leu-containing tripeptides is highly sequence dependent; whether changing the sequence order (from LGR to LRG) or increasing the sequence length (from LGR to LGGR), Ka decreases by about three orders of magnitude. Interestingly, substituting N-terminal Leu for its isomer Ile, the binding of CB[7] to tripeptides weakens significantly with Ka decreasing by 3-8 orders of magnitude. Thus CB[7] can effectively distinguish N-terminal Leu-containing tripeptides from N-terminal Ile-containing tripeptides. Importantly, we predict that when R is as C-terminus, regardless of N-terminal residue being of aromatic type or Leu, the binding strength is always close to the nanomolar level. Therefore, R can be introduced to rationally design novel peptides with high binding affinity to CB[7] in practical applications.
UR - http://www.scopus.com/inward/record.url?scp=85149409184&partnerID=8YFLogxK
U2 - 10.1039/d2cp03818h
DO - 10.1039/d2cp03818h
M3 - Article
C2 - 36857719
AN - SCOPUS:85149409184
SN - 1463-9076
VL - 25
SP - 7893
EP - 7900
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 11
ER -