TY - JOUR
T1 - The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells
AU - Zhou, Ning
AU - Huang, Bolong
AU - Sun, Mingzi
AU - Zhang, Yu
AU - Li, Liang
AU - Lun, Yingzhuo
AU - Wang, Xueyun
AU - Hong, Jiawang
AU - Chen, Qi
AU - Zhou, Huanping
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Organic spacer cations in layered 2D (A1)2(A2)n−1BnX3n+1 (where A1 is an organic cation acting as a spacer between the perovskite layers, A2 is a monovalent cation, e.g., Cs+,CH3NH3+, CH(NH2)2+) perovskite materials improve the long-term stability of the resulting solar cells, but hamper their power conversion efficiency due to poor carrier generation/transportation. Rational guidelines are thus required to enable the design of organic spacer cations. Herein, mixed A1 cations are employed in layered 2D perovskites to investigate the interplay between alkylamine cations and unsaturated alkylamine cations. It is revealed that alkylamine spacer cations are able to facilitate precursor assembly, which results in the orientated growth of perovskite crystals. Unsaturated alkylamine cations further lead to reduced exciton binding energy, which improves carrier pathway in the 2D perovskites. By mixing both cations, substantially improved open circuit voltage is observed in the resultant photovoltaic cells with the efficiency of 15.46%, one of the highest one based on (A1)2(A2)3Pb4I13 layered 2D perovskites. The generality of the design principle is further extended to other cation combinations.
AB - Organic spacer cations in layered 2D (A1)2(A2)n−1BnX3n+1 (where A1 is an organic cation acting as a spacer between the perovskite layers, A2 is a monovalent cation, e.g., Cs+,CH3NH3+, CH(NH2)2+) perovskite materials improve the long-term stability of the resulting solar cells, but hamper their power conversion efficiency due to poor carrier generation/transportation. Rational guidelines are thus required to enable the design of organic spacer cations. Herein, mixed A1 cations are employed in layered 2D perovskites to investigate the interplay between alkylamine cations and unsaturated alkylamine cations. It is revealed that alkylamine spacer cations are able to facilitate precursor assembly, which results in the orientated growth of perovskite crystals. Unsaturated alkylamine cations further lead to reduced exciton binding energy, which improves carrier pathway in the 2D perovskites. By mixing both cations, substantially improved open circuit voltage is observed in the resultant photovoltaic cells with the efficiency of 15.46%, one of the highest one based on (A1)2(A2)3Pb4I13 layered 2D perovskites. The generality of the design principle is further extended to other cation combinations.
KW - 2D perovskites
KW - efficiency
KW - exciton binding energy
KW - organic spacers
KW - solar cells
UR - http://www.scopus.com/inward/record.url?scp=85074754766&partnerID=8YFLogxK
U2 - 10.1002/aenm.201901566
DO - 10.1002/aenm.201901566
M3 - Article
AN - SCOPUS:85074754766
SN - 1614-6832
VL - 10
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 1
M1 - 1901566
ER -