The method of axial drift compensation of laser differential confocal microscopy based on zero-tracking

Yajie Wang, Han Cui, Yun Wang*, Lirong Qiu, Weiqian Zhao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Laser differential confocal microscopy (DCM) has advantages of high axial resolution and strong ability of focus identification. However, the imaging mechanism of point scanning needs long measurement time, in the process due to itself mechanical instability and the influence of environment vibration the axial drift of object position is inevitable, which will reduce lateral resolution of the DCM. To ensure the lateral resolution we propose an axial drift compensation method based on zero-tracking in this paper. The method takes advantage of the linear region of differential confocal axial response curve, gets axial drift by detecting the laser intensity; uses grating sensor to monitor the real-time axial drift of lifting stage and realizes closed-loop control; uses capacitive sensor of objective driver to measure its position. After getting the axial drift of object, the lifting stage and objective driver will be driven to compensate position according to the axial drift. This method is realized by using Visual Studio 2010, and the experiment demonstrates that the compensation precision of the proposed method can reach 6 nm. It is not only easy to implement, but also can compensate the axial drift actively and real-timely. Above all, this method improves the system stability of DCM effectively.

Original languageEnglish
Title of host publication2015 International Conference on Optical Instruments and Technology
Subtitle of host publicationOptical Systems and Modern Optoelectronic Instruments, OIT 2015
EditorsKimio Tatsuno, Xiaodi Tan, Yongtian Wang
PublisherSPIE
ISBN (Electronic)9781628417999
DOIs
Publication statusPublished - 2015
Event2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, OIT 2015 - Beijing, China
Duration: 17 May 201519 May 2015

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9618
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, OIT 2015
Country/TerritoryChina
CityBeijing
Period17/05/1519/05/15

Keywords

  • axial drift compensation
  • differential confocal microscope
  • grating sensor
  • zero-tracking

Fingerprint

Dive into the research topics of 'The method of axial drift compensation of laser differential confocal microscopy based on zero-tracking'. Together they form a unique fingerprint.

Cite this