Abstract
In the present study, viscous potential flow theory is employed to investigate the temporal instability of a viscous liquid jet in swirling gas with axial velocity oscillation. The dispersion-relation equation is obtained between dimensionless growth rate and wave number. Because of the axial velocity oscillation of gas, there are more than one instability regions, including Kelvin–Helmholtz (K–H) instability region and parametric instability region. The results suggest that increasing gas swirling strength stabilizes the liquid jet in axisymmetric mode, while it enhances the instability in nonaxisymmetric modes. And the gas viscosity has a destabilizing effect. In addition, increasing the forcing frequency enhances instability in the K–H instability region. However, it has a stabilizing effect in the parametric instability region. Furthermore, increasing oscillation amplitude enhances instability in both the K–H instability region and the parametric instability region. Because of the competition between the parametric and K–H instabilities, the location of dominant wave number is uncertain.
Original language | English |
---|---|
Pages (from-to) | 3852-3862 |
Number of pages | 11 |
Journal | AIAA Journal |
Volume | 60 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2022 |