Abstract
The creation of efficient artificial systems that mimic natural photosynthesis represents a key current challenge. Here, we describe a high-performance recyclable photocatalytic core–shell nanofibre system that integrates a cobalt catalyst and a photosensitizer in close proximity for hydrogen production from water using visible light. The composition, microstructure and dimensions—and thereby the catalytic activity—of the nanofibres were controlled through living crystallization-driven self-assembly. In this seeded growth strategy, block copolymers with crystallizable core-forming blocks and functional coronal segments were coassembled into low-dispersity, one-dimensional architectures. Under optimized conditions, the nanofibres promote the photocatalytic production of hydrogen from water with an overall quantum yield for solar energy conversion to hydrogen gas of ~4.0% (with a turnover number of >7,000 over 5 h, a frequency of >1,400 h−1 and a H2 production rate of >0.327 μmol h−1 with 1.34 μg of catalytic polymer (that is, >244,300 μmol h−1 g−1 of catalytic polymer)). [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 1150-1156 |
Number of pages | 7 |
Journal | Nature Chemistry |
Volume | 12 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2020 |
Externally published | Yes |