TY - JOUR
T1 - Study on GAP Adhesive-Based Polymer Films, Energetic Polymer Composites and Application
AU - Wu, Siyuan
AU - Li, Xiaomeng
AU - Ge, Zhen
AU - Luo, Yunjun
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/3
Y1 - 2023/3
N2 - To lay the foundation for environmentally friendly energetic polymer composites, GAP (glycidyl azide polymer) adhesive-based polymer films with different curing parameter R (mol ratio of hydroxyl/isocyanate) and energetic polymer composites with different RDX contents were studied. GAP/TDI (toluene diisocyanate)/GLY(glycerol) was selected as the adhesive system. The tensile strength and elongation at the break of the polymer film with R = 2.2, was 14.34 MPa and 176.86%, respectively, as observed by an AGS-J electronic universal testing machine. A relatively complete cross-linking network and high hydrogen bonding interaction were observed by LF-NMR (low-field nuclear magnetic resonance, where the cross-linking density was 11.06 × 10−4 mol/cm3) and FT-IR (fourier transform infrared spectroscopy, where the carbonyl bonding ratio was 64.84%). Forty percent RDX(hexogen) was added into the adhesive system. The tensile strength was 4.65 MPa, and the elongation at the break was 78.49%; meanwhile, the heat of the explosive was 2.87 MJ/kg, and the residue carbon rate was only 2.47%. The tensile cross-sections of energetic polymer composites were observed by SEM (Scanning electron microscopy).
AB - To lay the foundation for environmentally friendly energetic polymer composites, GAP (glycidyl azide polymer) adhesive-based polymer films with different curing parameter R (mol ratio of hydroxyl/isocyanate) and energetic polymer composites with different RDX contents were studied. GAP/TDI (toluene diisocyanate)/GLY(glycerol) was selected as the adhesive system. The tensile strength and elongation at the break of the polymer film with R = 2.2, was 14.34 MPa and 176.86%, respectively, as observed by an AGS-J electronic universal testing machine. A relatively complete cross-linking network and high hydrogen bonding interaction were observed by LF-NMR (low-field nuclear magnetic resonance, where the cross-linking density was 11.06 × 10−4 mol/cm3) and FT-IR (fourier transform infrared spectroscopy, where the carbonyl bonding ratio was 64.84%). Forty percent RDX(hexogen) was added into the adhesive system. The tensile strength was 4.65 MPa, and the elongation at the break was 78.49%; meanwhile, the heat of the explosive was 2.87 MJ/kg, and the residue carbon rate was only 2.47%. The tensile cross-sections of energetic polymer composites were observed by SEM (Scanning electron microscopy).
KW - adhesive
KW - energetic polymer composites
KW - mechanical properties
KW - polymer film
UR - http://www.scopus.com/inward/record.url?scp=85151738389&partnerID=8YFLogxK
U2 - 10.3390/polym15061538
DO - 10.3390/polym15061538
M3 - Article
AN - SCOPUS:85151738389
SN - 2073-4360
VL - 15
JO - Polymers
JF - Polymers
IS - 6
M1 - 1538
ER -