Abstract
The rapid development and wide application of laser technology, together with the gradually increased output energy of lasers, pose a great threat to safety. Therefore, the demand for anti-laser is urgent. Highly reflective coatings can dissipate large incident laser energy through reflection. In this paper, zirconium silicate (ZrSiO4) highly reflective ceramic glaze coatings were prepared on both ceramic and metal substrates. Their macro and micro structure evolution treated at different heating temperatures were studied. The reflectivity of the coatings was on average 85% over the range of 400 and 2400 nm and reaches a maximum of 94% at 1064 nm. The coatings on ceramic substrates showed good stability when irradiated under high-energy continuous laser with power density of 2000 W/cm2 for 60 s. On the other hand, the coatings prepared on metal substrates formed a layer of dense, glaze-like material after high-energy continuous laser irradiation with power density of 500 W/cm2 for 10 s or 1000 W/cm2 for 5 s, demonstrating good anti-laser performance.
Original language | English |
---|---|
Article number | 112279 |
Journal | Materials and Design |
Volume | 233 |
DOIs | |
Publication status | Published - Sept 2023 |
Keywords
- Anti-laser coating
- Glaze like structure
- Heat treatment
- High reflectivity
- Zirconium silicate