TY - JOUR
T1 - Studies on aeroelastic analysis and control of aircraft structures
AU - Hu, Haiyan
AU - Zhao, Yonghui
AU - Huang, Rui
N1 - Publisher Copyright:
© 2016, Editorial Office of Chinese Journal of Theoretical and Applied Mechanics. All right reserved.
PY - 2016/1/18
Y1 - 2016/1/18
N2 - The development of active control has witnessed a great change in the design of aircraft structures, from the passive design of increasing structure stiffness to the active design in view of control configured aircraft. The idea of active design does not intentionally avoid the aeroelastic problem, but adjust the structural aeroelasticity via active control so as to reduce the structure weight and optimize the aircraft performance. To achieve this purpose, it is necessary to analyze the coupling between the aircraft structure and surrounding aerodynamic loads. The aeronautical community has made great efforts to study the corresponding aeroelastic problems and gain an insight into the coupling among aircraft structure, aerodynamics and active control since 1980's. However, most studies have been based on the simplified models. As such, it is diffcult to apply the research achievements to aeronautical industry. This review article surveys the recent advances in the dynamic problems of aircraft aeroelasticity including the aerodynamic nonlinearity, the backlash nonlinearity of control surfaces, instability induced by time delay in control loop, active flutter suppression, gust load alleviation, as well as corresponding wind tunnel tests. The review focuses on the new approaches proposed by the team of authors, and the corresponding numerical simulations and wind tunnel tests over the past decade. Finally, the review addresses a number of open problems related to the aeroelastic analysis and control.
AB - The development of active control has witnessed a great change in the design of aircraft structures, from the passive design of increasing structure stiffness to the active design in view of control configured aircraft. The idea of active design does not intentionally avoid the aeroelastic problem, but adjust the structural aeroelasticity via active control so as to reduce the structure weight and optimize the aircraft performance. To achieve this purpose, it is necessary to analyze the coupling between the aircraft structure and surrounding aerodynamic loads. The aeronautical community has made great efforts to study the corresponding aeroelastic problems and gain an insight into the coupling among aircraft structure, aerodynamics and active control since 1980's. However, most studies have been based on the simplified models. As such, it is diffcult to apply the research achievements to aeronautical industry. This review article surveys the recent advances in the dynamic problems of aircraft aeroelasticity including the aerodynamic nonlinearity, the backlash nonlinearity of control surfaces, instability induced by time delay in control loop, active flutter suppression, gust load alleviation, as well as corresponding wind tunnel tests. The review focuses on the new approaches proposed by the team of authors, and the corresponding numerical simulations and wind tunnel tests over the past decade. Finally, the review addresses a number of open problems related to the aeroelastic analysis and control.
KW - Active flutter suppression
KW - Feedback delay
KW - Free-play nonlinearity
KW - Gust load alleviation
KW - Nonlinear model order reduction
KW - Wind tunnel tests
UR - http://www.scopus.com/inward/record.url?scp=84960961261&partnerID=8YFLogxK
U2 - 10.6052/0459-1879-15-423
DO - 10.6052/0459-1879-15-423
M3 - Review article
AN - SCOPUS:84960961261
SN - 0459-1879
VL - 48
SP - 1
EP - 27
JO - Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics
JF - Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics
IS - 1
ER -