TY - GEN
T1 - Strategic information revelation in crowdsourcing systems without verification
AU - Huang, Chao
AU - Yu, Haoran
AU - Huang, Jianwei
AU - Berry, Randall A.
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/5/10
Y1 - 2021/5/10
N2 - We study a crowdsourcing problem where the platform aims to incentivize distributed workers to provide high-quality and truthful solutions without the ability to verify the solutions. While most prior work assumes that the platform and workers have symmetric information, we study an asymmetric information scenario where the platform has informational advantages. Specifically, the platform knows more information regarding workers' average solution accuracy, and can strategically reveal such information to workers. Workers will utilize the announced information to determine the likelihood that they obtain a reward if exerting effort on the task. We study two types of workers: (1) naive workers who fully trust the announcement, and (2) strategic workers who update prior belief based on the announcement. For naive workers, we show that the platform should always announce a high average accuracy to maximize its payoff. However, this is not always optimal for strategic workers, as it may reduce the credibility of the platform's announcement and hence reduce the platform's payoff. Interestingly, the platform may have an incentive to even announce an average accuracy lower than the actual value when facing strategic workers. Another counter-intuitive result is that the platform's payoff may decrease in the number of high-accuracy workers.
AB - We study a crowdsourcing problem where the platform aims to incentivize distributed workers to provide high-quality and truthful solutions without the ability to verify the solutions. While most prior work assumes that the platform and workers have symmetric information, we study an asymmetric information scenario where the platform has informational advantages. Specifically, the platform knows more information regarding workers' average solution accuracy, and can strategically reveal such information to workers. Workers will utilize the announced information to determine the likelihood that they obtain a reward if exerting effort on the task. We study two types of workers: (1) naive workers who fully trust the announcement, and (2) strategic workers who update prior belief based on the announcement. For naive workers, we show that the platform should always announce a high average accuracy to maximize its payoff. However, this is not always optimal for strategic workers, as it may reduce the credibility of the platform's announcement and hence reduce the platform's payoff. Interestingly, the platform may have an incentive to even announce an average accuracy lower than the actual value when facing strategic workers. Another counter-intuitive result is that the platform's payoff may decrease in the number of high-accuracy workers.
UR - http://www.scopus.com/inward/record.url?scp=85111939099&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM42981.2021.9488853
DO - 10.1109/INFOCOM42981.2021.9488853
M3 - Conference contribution
AN - SCOPUS:85111939099
T3 - Proceedings - IEEE INFOCOM
BT - INFOCOM 2021 - IEEE Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 40th IEEE Conference on Computer Communications, INFOCOM 2021
Y2 - 10 May 2021 through 13 May 2021
ER -