Abstract
Blue-emissive nanocrystals (NCs) with high photoluminescence quantum yields (PL QYs) and excellent stability are essential for lighting and displays. Here, a facile top-down approach (including two steps: thermal annealing and ultrasonic treatment) by using aluminum acetylacetonate (Al(acac)3) as a precursor is adopted to fabricate blue-emissive Al(acac)3 NCs with high PL QY reaching 81.8%, the highest reported value for the aluminum compound-based NCs so far. Additionally, the as-fabricated Al(acac)3 NC solution (in toluene) exhibits high stability under air atmosphere condition, maintaining 61.2% of initial PL QY after 1 year. Furthermore, solution-processed Al(acac)3 NCs/poly(methyl methacrylate) (PMMA) composite film with blue emission is demonstrated. Finally, combinations of the blue-emitting Al(acac)3 NCs/PMMA composite film with red-emitting and green-emitting CuInS2 composite films are realized, resulting in remote ultraviolet-pumped white light-emitting diodes with a high color rendering index of 91. These findings inform new blue-emissive NCs and composite films, potentially paving the way to design new structures of lighting and display devices.
Original language | English |
---|---|
Pages (from-to) | 1509-1518 |
Number of pages | 10 |
Journal | Nanophotonics |
Volume | 9 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Jun 2020 |
Keywords
- Al(acac)NCs/PMMA composite film
- Al(acac)nanocrystals
- remote UV-WLEDs
- top-down approach