Soluble aluminum hydrides function as catalysts in deprotonation, insertion, and activation reactions

Wenling Li, Xiaoli Ma*, Mrinalini G. Walawalkar, Zhi Yang, Herbert W. Roesky

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

88 Citations (Scopus)

Abstract

The past decades have witnessed staggering progress in the chemistry of compounds with s- and p-block elements. Aluminum compounds, especially soluble aluminum hydrides, received wide explorations due to their high reactivity towards protonic reagents and unsaturated compounds containing multiple bonds such as C[dbnd]O, C[dbnd]NR, C[tbnd]N, and C[tbnd]C. Recent studies suggest that reactions employed aluminum hydrides usually occurred via deprotonation or hydroalumination, which exhibit great perspective in main group catalysis. These stoichiometric reactions often act as the initial step during the overall catalytic cycle. Appropriate ligands at the central Al atom are important for the activation of the substrates and the regeneration of the active catalytic molecules. In this review, we focus on the activation of carbonyl compounds, alkenes, and alkynes using soluble aluminum hydrides based on the previous stoichiometric reactions. Different mechanisms were proposed to explain the driving force for the turnover of the catalytic cycle in dehydrocoupling, hydroboration, and hydrosilylation. Moreover, aluminum hydrides stabilized by tridentate ligands, which function in the dehydrocoupling of benzylamine and dehydrogenation of formic acid, are also included in this review.

Original languageEnglish
Pages (from-to)14-29
Number of pages16
JournalCoordination Chemistry Reviews
Volume350
DOIs
Publication statusPublished - 1 Nov 2017

Keywords

  • Aluminum hydride
  • Catalyst
  • Deprotonation
  • Hydroalumination

Fingerprint

Dive into the research topics of 'Soluble aluminum hydrides function as catalysts in deprotonation, insertion, and activation reactions'. Together they form a unique fingerprint.

Cite this