Abstract
In a data-driven context, bionic polarization navigation requires a mass of skylight polarization pattern data with diversity, complete ground truth, and scene information. However, acquiring such data in urban environments, where bionic polarization navigation is widely utilized, remains challenging. In this paper, we proposed a virtual-real-fusion framework of the skylight polarization pattern simulator and provided a data preparation method complementing the existing pure simulation or measurement method. The framework consists of a virtual part simulating the ground truth of skylight polarization pattern, a real part measuring scene information, and a fusion part fusing information of the first two parts according to the imaging projection relationship. To illustrate the framework, we constructed a simulator instance adapted to the urban environment and clear weather and verified it in 174 urban scenes. The results showed that the simulator can provide a mass of diverse urban skylight polarization pattern data with scene information and complete ground truth based on a few practical measurements. Moreover, we released a dataset based on the results and opened our code to facilitate researchers preparing and adapting their datasets to their research targets.
Original language | English |
---|---|
Article number | 6906 |
Journal | Sensors |
Volume | 23 |
Issue number | 15 |
DOIs | |
Publication status | Published - Aug 2023 |
Keywords
- atmospheric model
- bionic polarization navigation
- data preparation
- machine learning
- polarimeter
- skylight polarization pattern