Single-pixel depth imaging

Huayi Wang, Liheng Bian*, Jun Zhang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The conventional single-pixel imaging (SPI) is unable to directly obtain the target's depth information due to the lack of depth modulation and corresponding decoding. The existing SPI-based depth imaging systems utilize multiple single-pixel detectors to capture multi-angle images, or introduce depth modulation devices such as optical grating to achieve three-dimensional imaging. The methods require bulky systems and high computational complexity. In this paper, we present a novel and efficient three-dimensional SPI method that does not require any additional hardware compared to the conventional SPI system. Specifically, a multiplexing illumination strategy combining random and sinusoidal pattern is proposed, which is able to simultaneously encode the target's spatial and depth information into a measurement sequence captured by a single-pixel detector. To decode the three-dimensional information from one-dimensional measurements, we built and trained a deep convolutional neural network. The end-to-end framework largely accelerates reconstruction speed, reduces computational complexity and improves reconstruction precision. Both simulations and experiments validate the method's effectiveness and efficiency for depth imaging.

Original languageEnglish
Title of host publicationOptoelectronic Imaging and Multimedia Technology VI
EditorsQionghai Dai, Tsutomu Shimura, Zhenrong Zheng
PublisherSPIE
ISBN (Electronic)9781510630918
DOIs
Publication statusPublished - 2019
EventOptoelectronic Imaging and Multimedia Technology VI 2019 - Hangzhou, China
Duration: 21 Oct 201923 Oct 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11187
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceOptoelectronic Imaging and Multimedia Technology VI 2019
Country/TerritoryChina
CityHangzhou
Period21/10/1923/10/19

Keywords

  • Composite coding
  • Convolutional neural network
  • Depth imaging
  • Single-pixel imaging

Fingerprint

Dive into the research topics of 'Single-pixel depth imaging'. Together they form a unique fingerprint.

Cite this