TY - JOUR
T1 - Simplified Construction of Engineered Bacillus subtilis Host for Improved Expression of Proteins Harboring Noncanonical Amino Acids
AU - Xu, Changgeng
AU - Zou, Qin
AU - Tian, Jiheng
AU - Li, Mengyuan
AU - Xing, Baowen
AU - Gong, Julia
AU - Wang, Jiangyun
AU - Huo, Yi Xin
AU - Guo, Shuyuan
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/2/17
Y1 - 2023/2/17
N2 - The UAG-based genetic code expansion (GCE) enables site-specific incorporation of noncanonical amino acids (ncAAs) harboring novel chemical functionalities in specific target proteins. However, most GCE studies were done in several whole-genome engineered chassis cells whose hundreds of UAG stop codons were systematically edited to UAA to avoid readthrough in protein synthesis in the presence of GCE. The huge workload of removing all UAG limited the application of GCE in other microbial cell factories (MCF) such as Bacillus subtilis, which has 607 genes ended with UAG among its 4245 coding genes. Although the 257 essential genes count only 6.1% of the genes in B. subtilis, they transcribe 12.2% of the mRNAs and express 52.1% of the proteins under the exponential phase. Here, we engineered a strain named Bs-22 in which all 22 engineerable UAG stop codons in essential genes were edited to UAA via CRISPR/Cas9-mediated multiple-site engineering to minimize the negative effect of GCE on the expression of essential genes. Besides the process of constructing GCE-compatible B. subtilis was systematically optimized. Compared with wild-type B. subtilis (Bs-WT), the fluorescence signal of the eGFP expression could enhance 2.25-fold in Bs-22, and the production of protein tsPurple containing l-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) was increased 2.31-fold in Bs-22. We verified that all purified tsPurple proteins from Bs-22 contained Cou, indicating the excellent fidelity of the strategy. This proof-of-concept study reported efficient overexpression of ncAA-rich proteins in MCF with minimized engineering, shedding new light on solving the trade-off between efficiency and workload.
AB - The UAG-based genetic code expansion (GCE) enables site-specific incorporation of noncanonical amino acids (ncAAs) harboring novel chemical functionalities in specific target proteins. However, most GCE studies were done in several whole-genome engineered chassis cells whose hundreds of UAG stop codons were systematically edited to UAA to avoid readthrough in protein synthesis in the presence of GCE. The huge workload of removing all UAG limited the application of GCE in other microbial cell factories (MCF) such as Bacillus subtilis, which has 607 genes ended with UAG among its 4245 coding genes. Although the 257 essential genes count only 6.1% of the genes in B. subtilis, they transcribe 12.2% of the mRNAs and express 52.1% of the proteins under the exponential phase. Here, we engineered a strain named Bs-22 in which all 22 engineerable UAG stop codons in essential genes were edited to UAA via CRISPR/Cas9-mediated multiple-site engineering to minimize the negative effect of GCE on the expression of essential genes. Besides the process of constructing GCE-compatible B. subtilis was systematically optimized. Compared with wild-type B. subtilis (Bs-WT), the fluorescence signal of the eGFP expression could enhance 2.25-fold in Bs-22, and the production of protein tsPurple containing l-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) was increased 2.31-fold in Bs-22. We verified that all purified tsPurple proteins from Bs-22 contained Cou, indicating the excellent fidelity of the strategy. This proof-of-concept study reported efficient overexpression of ncAA-rich proteins in MCF with minimized engineering, shedding new light on solving the trade-off between efficiency and workload.
KW - Bacillus subtilis
KW - CRISPR/Cas9
KW - genetic code expansion
KW - noncanonical amino acid
KW - synonymous replacements
UR - http://www.scopus.com/inward/record.url?scp=85146628749&partnerID=8YFLogxK
U2 - 10.1021/acssynbio.2c00604
DO - 10.1021/acssynbio.2c00604
M3 - Article
C2 - 36653175
AN - SCOPUS:85146628749
SN - 2161-5063
VL - 12
SP - 583
EP - 595
JO - ACS Synthetic Biology
JF - ACS Synthetic Biology
IS - 2
ER -