Robust Collaborative Perception against Temporal Information Disturbance

Xunjie He, Yiming Li, Te Cui, Meiling Wang, Tong Liu, Yufeng Yue*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Collaborative perception facilitates a more comprehensive representation of the environment by leveraging complementary information shared among various agents and sensors. However, practical applications often encounter information disturbance which includes perception packet loss and time delays, and a comprehensive framework that can simultaneously address such issues is absent. In addition, the feature extraction process prior to fusion is not sufficient, as it lacks exploration of the local semantics and context dependencies of individual features. To enhance both accuracy and robustness, this paper introduces a novel framework named Robust Collaborative Perception against Temporal Information Disturbance, which predicts perception information when disturbance occurs. Specifically, the Historical Frame Prediction (HFP) module is introduced to make compensation for information loss with temporal association excavation of historical features. Based on the predicted features generated by the HFP module, the Pyramid Attention Integration (PAI) module is introduced to augment local semantics and incorporate global long-range dependencies through multi-scale window attention. Compared with existing methods on the publicly available dataset OPV2V, our approach exhibits superior performance and expanded robustness in the 3D object detection task. The code will be publicly available at https://github.com/hexunjie/Ro-temd.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages16207-16213
Number of pages7
ISBN (Electronic)9798350384574
DOIs
Publication statusPublished - 2024
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period13/05/2417/05/24

Fingerprint

Dive into the research topics of 'Robust Collaborative Perception against Temporal Information Disturbance'. Together they form a unique fingerprint.

Cite this