Abstract
Phase instability is one of the major obstacles to the wide application of formamidinium (FA)-dominated perovskite solar cells (PSCs). An in-depth investigation on relevant phase transitions is urgently needed to explore more effective phase-stabilization strategies. Herein, the reversible phase-transition process of FA1−xCsxPbI3 perovskite between photoactive phase (α phase) and non-photoactive phase (δ phase) under humidity, as well as the reversible healing of degraded devices, is monitored. Moreover, through in situ atomic force microscopy, the kinetic transition between α and δ phase is revealed to be the “nucleation–growth transition” process. Density functional theory calculation implies an enthalpy-driven α-to-δ degradation process during humidity aging and an entropy-driven δ-to-α healing process at high temperatures. The α phase of FA1−xCsxPbI3 can be stabilized at elevated temperature under high humidity due to the increased nucleation barrier, and the resulting non-encapsulated PSCs retain >90% of their initial efficiency after >1000 h at 60 °C and 60% relative humidity. This finding provides a deepened understanding on the phase-transition process of FA1−xCsxPbI3 from both thermodynamics and kinetics points of view, which also presents an effective means to stabilize the α phase of FA-dominated perovskites and devices for practical applications.
Original language | English |
---|---|
Article number | 2204458 |
Journal | Advanced Materials |
Volume | 34 |
Issue number | 39 |
DOIs | |
Publication status | Published - 28 Sept 2022 |
Keywords
- heat healing
- perovskite solar cells
- phase stability
- reversible phase transition