TY - JOUR
T1 - Research on the mechanical properties and curing networks of energetic GAP/TDI binders
AU - Ma, Song
AU - Li, Yang
AU - Li, Yajin
AU - Li, Guoping
AU - Luo, Yunjun
N1 - Publisher Copyright:
© 2017 Institute of Industrial Organic Chemistry, Poland.
PY - 2017
Y1 - 2017
N2 - This research focused on correlations between the macroscopic mechanical performance and microstructures of energetic binders. Initially a series of glycidyl azide polymer (GAP)/toluene diisocyanate (TDI) binders, catalyzed by a mixture of dibutyltin dilaurate (DBTDL) and triphenyl bismuth (TPB), was prepared. Uniaxial tensile testing, and low-field nuclear magnetic resonance and infrared spectroscopy were then used to investigate the mechanical properties, curing networks, and hydrogen bonding (H-bonds) of these binders. Additionally, a novel method based on the molecular theory of elasticity and the statistical theory of rubber elasticity was used to analyze the integrity of the networks. The results showed that the curing parameter R strongly influences the mechanical properties and toughness of the binders, and that a tensile stress (σm) of 1.6 MPa and an elongation (εm) of 1041% was observed with an R value of 1.6. The cross-linking density increased sharply with the curing parameter, but only modestly with an R value ≥ 1.8. The proportion of H-bonds formed by the imino groups increased with the R value and reached 72.61% at an R value of 1.6, indicating a positive correlation between the H-bonds and σm. Molecular entanglement was demonstrated to increase with R and to contribute dramatically to the mechanical performance. The integrity of these networks, evaluated by a correction factor (A), varies with R, and a network of the GAP/TDI binder with an R value of 1.6 is desirable.
AB - This research focused on correlations between the macroscopic mechanical performance and microstructures of energetic binders. Initially a series of glycidyl azide polymer (GAP)/toluene diisocyanate (TDI) binders, catalyzed by a mixture of dibutyltin dilaurate (DBTDL) and triphenyl bismuth (TPB), was prepared. Uniaxial tensile testing, and low-field nuclear magnetic resonance and infrared spectroscopy were then used to investigate the mechanical properties, curing networks, and hydrogen bonding (H-bonds) of these binders. Additionally, a novel method based on the molecular theory of elasticity and the statistical theory of rubber elasticity was used to analyze the integrity of the networks. The results showed that the curing parameter R strongly influences the mechanical properties and toughness of the binders, and that a tensile stress (σm) of 1.6 MPa and an elongation (εm) of 1041% was observed with an R value of 1.6. The cross-linking density increased sharply with the curing parameter, but only modestly with an R value ≥ 1.8. The proportion of H-bonds formed by the imino groups increased with the R value and reached 72.61% at an R value of 1.6, indicating a positive correlation between the H-bonds and σm. Molecular entanglement was demonstrated to increase with R and to contribute dramatically to the mechanical performance. The integrity of these networks, evaluated by a correction factor (A), varies with R, and a network of the GAP/TDI binder with an R value of 1.6 is desirable.
KW - Curing networks
KW - Entanglement
KW - Glycidyl azide polymer (GAP)
KW - Hydrogen bonding
KW - Integrity
UR - http://www.scopus.com/inward/record.url?scp=85029597356&partnerID=8YFLogxK
U2 - 10.22211/cejem/69575
DO - 10.22211/cejem/69575
M3 - Article
AN - SCOPUS:85029597356
SN - 1733-7178
VL - 14
SP - 708
EP - 725
JO - Central European Journal of Energetic Materials
JF - Central European Journal of Energetic Materials
IS - 3
ER -