Research on Nonlinear Ultrasonic Testing Technology on Fatigue Process of Metal Materials

Qinxue Pan*, Sa Li, Peilu Li, Lang Xu, Wei Li, Xiaoyou Zhou, Haoshen Yu, Shuangyang Li, Yunmiao Zhang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Metal materials are prone to serious problems such as material performance degradation, fatigue damage and induced fatigue damage in the process of tension, compression or bearing alternating loads, resulting in heavy losses. Therefore, it is necessary to study the degradation of mechanical properties during material fatigue. When the ultrasonic wave propagates in the metal component, it interacts with the fatigue damage in the material, so that the ultrasonic waveform is distorted and high-order harmonic components are generated, which can be used to characterize the degree of material fatigue and mechanical property degradation. This paper takes YL12 aluminum alloy and 45 steel as the research objects, and uses the COMSOL software to simulate the propagation process of the surface wave in the sample. The specimen is cyclically loaded by a tensile machine, an ultrasonic nonlinear detection platform is built, excitation pulse signal, analyze frequency domain waveform, and the second-order relative nonlinearity of the specimen under different cyclic loading times is calculated. The linear coefficient is obtained, and the relative nonlinear coefficient shows a monotonically increasing trend with the increase of loading times during the fatigue process.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Mechatronics and Automation, ICMA 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1819-1824
Number of pages6
ISBN (Electronic)9781665408523
DOIs
Publication statusPublished - 2022
Event19th IEEE International Conference on Mechatronics and Automation, ICMA 2022 - Guilin, Guangxi, China
Duration: 7 Aug 202210 Aug 2022

Publication series

Name2022 IEEE International Conference on Mechatronics and Automation, ICMA 2022

Conference

Conference19th IEEE International Conference on Mechatronics and Automation, ICMA 2022
Country/TerritoryChina
CityGuilin, Guangxi
Period7/08/2210/08/22

Keywords

  • Deterioration of mechanical properties
  • Fatigue
  • Nonlinear ultrasonic
  • Relative nonlinear coefficient

Fingerprint

Dive into the research topics of 'Research on Nonlinear Ultrasonic Testing Technology on Fatigue Process of Metal Materials'. Together they form a unique fingerprint.

Cite this