TY - JOUR
T1 - Reconstruction and optimization of complex network community structure under deep learning and quantum ant colony optimization algorithm
AU - Mei, Peng
AU - Ding, Gangyi
AU - Jin, Qiankun
AU - Zhang, Fuquan
AU - Chen, Yeh Cheng
N1 - Publisher Copyright:
© 2021, Tech Science Press. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Community structure is a key component in complex network systems. This paper aims to improve the effectiveness of community detection and community discovery in complex network systems by providing directions for the reconstruction and optimization of community structures to expand the application of intelligent optimization algorithms in community structures. First, deep learning algorithms and ant colony algorithms are used to elaborate the community detection and community discovery in complex networks. Next, we introduce the technology of transfer learning and propose an algorithm of deep self-encoder modeling based on transfer learning (DSEM-TL). The DSEM-TL algorithm’s indicators include normalized mutual information and modularity. Finally, an algorithm that combines the ant colony optimization (ACO) algorithm and the quantum update strategy, called QACO, is proposed. The proposed community structure reconstruction scheme is compared with other methods using the accuracy rate as the indicator. The results show that the DSEM-TL algorithm exhibits the optimal detection rate, better applicability, and higher effectiveness in real networks. Under the given the condition that the number of edges between communities Zout is >6, DSEM-TL shows better performance on the Girvan–Newman benchmark network than several other community discovery algorithms. Furthermore, under the given condition that the mixed parameter μ is >0.65, the DSEM-TL algorithm outperforms several other algorithms on the Lancichinetti–Fortuna-to–Radicchi benchmark network. When given μ < 0.4, the QACO algorithm can determine the proper division of the corresponding network. When the case is μ > 0.45, the division result corresponding to the QACO algorithm is closer to the real community division, which has a faster convergence speed and better convergence performances. Consequently, the proposed community structure reconstruction scheme has higher accuracy. The proposed two intelligent optimization algorithms have potential application in the reconstruction and optimization of community structure.
AB - Community structure is a key component in complex network systems. This paper aims to improve the effectiveness of community detection and community discovery in complex network systems by providing directions for the reconstruction and optimization of community structures to expand the application of intelligent optimization algorithms in community structures. First, deep learning algorithms and ant colony algorithms are used to elaborate the community detection and community discovery in complex networks. Next, we introduce the technology of transfer learning and propose an algorithm of deep self-encoder modeling based on transfer learning (DSEM-TL). The DSEM-TL algorithm’s indicators include normalized mutual information and modularity. Finally, an algorithm that combines the ant colony optimization (ACO) algorithm and the quantum update strategy, called QACO, is proposed. The proposed community structure reconstruction scheme is compared with other methods using the accuracy rate as the indicator. The results show that the DSEM-TL algorithm exhibits the optimal detection rate, better applicability, and higher effectiveness in real networks. Under the given the condition that the number of edges between communities Zout is >6, DSEM-TL shows better performance on the Girvan–Newman benchmark network than several other community discovery algorithms. Furthermore, under the given condition that the mixed parameter μ is >0.65, the DSEM-TL algorithm outperforms several other algorithms on the Lancichinetti–Fortuna-to–Radicchi benchmark network. When given μ < 0.4, the QACO algorithm can determine the proper division of the corresponding network. When the case is μ > 0.45, the division result corresponding to the QACO algorithm is closer to the real community division, which has a faster convergence speed and better convergence performances. Consequently, the proposed community structure reconstruction scheme has higher accuracy. The proposed two intelligent optimization algorithms have potential application in the reconstruction and optimization of community structure.
KW - Community detection
KW - Community discovery
KW - Complex network
KW - DSEM-TL algorithm
KW - QACO algorithm
UR - http://www.scopus.com/inward/record.url?scp=85100111285&partnerID=8YFLogxK
U2 - 10.32604/iasc.2021.012813
DO - 10.32604/iasc.2021.012813
M3 - Article
AN - SCOPUS:85100111285
SN - 1079-8587
VL - 27
SP - 159
EP - 171
JO - Intelligent Automation and Soft Computing
JF - Intelligent Automation and Soft Computing
IS - 1
ER -