TY - JOUR
T1 - Reconfigurable network structure with tunable multiple deformation modes
T2 - Mechanical designs, theoretical predictions, and experimental demonstrations
AU - Zhang, Kai
AU - Ji, Jinyu
AU - Huang, Yixing
AU - Song, Wei Li
AU - Wang, Hao
AU - Wang, Li Chen
AU - Guo, Xiaogang
AU - Fang, Daining
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Reconfigurable network structure with tunable multiple deformation modes exhibits promising applications in functional electromagnetic devices, frequency-reconfigurable antennas, flexible electronic devices, and robots with multiple motion modes due to its capability to realize multiple working characteristics in one device or system. In most previous studies on reconfigurable network structures with large deformation, researchers focus on tuning the deformation and mechanical properties for a specific deformation mode of the network structure. Therefore, designs for reconfigurable network structures to achieve multiple deformation modes and large deformation still remain a challenge. The inverse design of the reconfigurable network structure with desired mechanical responses under some specific external actuations is difficult due to the lack of theoretical models to describe the finite deformation of network structures actuated by external fields. This paper introduces a mechanical design strategy for the reconfigurable network structure to achieve a large deformation (over 45%) and multiple mechanical responses under the electrothermal actuation, including the uniform or non-uniform shrinkage and expansion, shearing, and bending deformation modes. Theoretical models for this reconfigurable network structure are developed to predict these unique mechanical responses and inversely design the reconfigurable network structure for the desired deformation modes in a facilitating method. The accuracy of the designed reconfigurable network structure is validated by the corresponding finite element analyses (FEAs) and experiments qualitatively and quantitatively. In accordance with these theoretical models, the deformed configuration and analytic solutions for some critical mechanical quantities, such as the electrothermally actuated effective strain for shrinkage, expansion and shearing deformation modes, and the bending angle for bending deformation modes, are obtained. The electrothermally actuated deformation of network structures can be tuned by the value of the normalized geometrical parameter d/t1 and the electrothermal actuation strategy. Furthermore, demonstrative experiments and FE simulations illustrate that multiple deformation modes can be achieved in the same network structure through the individual actuation strategy. This work provides guidelines from the aspects of theoretical predictions, FEAs, and experiments for future designs of the reconfigurable network structures to achieve desired mechanical responses.
AB - Reconfigurable network structure with tunable multiple deformation modes exhibits promising applications in functional electromagnetic devices, frequency-reconfigurable antennas, flexible electronic devices, and robots with multiple motion modes due to its capability to realize multiple working characteristics in one device or system. In most previous studies on reconfigurable network structures with large deformation, researchers focus on tuning the deformation and mechanical properties for a specific deformation mode of the network structure. Therefore, designs for reconfigurable network structures to achieve multiple deformation modes and large deformation still remain a challenge. The inverse design of the reconfigurable network structure with desired mechanical responses under some specific external actuations is difficult due to the lack of theoretical models to describe the finite deformation of network structures actuated by external fields. This paper introduces a mechanical design strategy for the reconfigurable network structure to achieve a large deformation (over 45%) and multiple mechanical responses under the electrothermal actuation, including the uniform or non-uniform shrinkage and expansion, shearing, and bending deformation modes. Theoretical models for this reconfigurable network structure are developed to predict these unique mechanical responses and inversely design the reconfigurable network structure for the desired deformation modes in a facilitating method. The accuracy of the designed reconfigurable network structure is validated by the corresponding finite element analyses (FEAs) and experiments qualitatively and quantitatively. In accordance with these theoretical models, the deformed configuration and analytic solutions for some critical mechanical quantities, such as the electrothermally actuated effective strain for shrinkage, expansion and shearing deformation modes, and the bending angle for bending deformation modes, are obtained. The electrothermally actuated deformation of network structures can be tuned by the value of the normalized geometrical parameter d/t1 and the electrothermal actuation strategy. Furthermore, demonstrative experiments and FE simulations illustrate that multiple deformation modes can be achieved in the same network structure through the individual actuation strategy. This work provides guidelines from the aspects of theoretical predictions, FEAs, and experiments for future designs of the reconfigurable network structures to achieve desired mechanical responses.
KW - Electrothermal actuation
KW - Finite deformation
KW - Horseshoe building block
KW - Multiple deformation modes
KW - Reconfigurable network structure
UR - http://www.scopus.com/inward/record.url?scp=85142673443&partnerID=8YFLogxK
U2 - 10.1016/j.ijsolstr.2022.112043
DO - 10.1016/j.ijsolstr.2022.112043
M3 - Article
AN - SCOPUS:85142673443
SN - 0020-7683
VL - 260-261
JO - International Journal of Solids and Structures
JF - International Journal of Solids and Structures
M1 - 112043
ER -