Abstract
In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper (Cu) and plumbum (Pb) into traditional polytetrafluoroethylene/aluminum (PTFE/Al), are studied. The thermal analysis and chemical reaction behavior of the PTFE/Al/Cu/Pb mixture are investigated by Differential Scanning Calorimetry (DSC),Thermo-gravimetry (TG), and X-ray Diffraction (XRD) techniques. Then, the shaped charge liners with PTFE/Al/Cu/Pb reactive materials are fabricated, and the X-ray experiments show that they could form reactive jets with excellent performance under the detonation effects of the shaped charge. Based on that, the penetration experiments of shaped charge with PTFE/Al/Cu/Pb reactive liner against steel plates are carried out, and the results demonstrate that the PTFE/Al/Cu/Pb reactive jets could produce a deeper penetration depth compared to the traditional PTFE/Al reactive jets. Meanwhile, the PTFE/Al/Cu/Pb reactive jets also show significant inner-blast effects, leading to dramatically cracking or fragmentation behavior of the penetrated steel plates. This new PTFE/Al/Cu/Pb reactive liner shaped charge presents enhanced penetration behavior for steel targets that incorporates the penetration capability of a high-density and ductility jet, and the chemical energy release of PTFE-matrix reactive materials.
Original language | English |
---|---|
Pages (from-to) | 1578-1588 |
Number of pages | 11 |
Journal | Defence Technology |
Volume | 18 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2022 |
Keywords
- Jet formation
- Penetration behavior
- Reactive liner
- Reactive materials
- Shaped charge