PrivTS: Differentially private frequent time-constrained sequential pattern mining

Yanhui Li*, Guoren Wang, Ye Yuan, Xin Cao, Long Yuan, Xuemin Lin

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Citations (Scopus)

Abstract

In this paper, we address the problem of mining time-constrained sequential patterns under the differential privacy framework. The mining of time-constrained sequential patterns from the sequence dataset has been widely studied, in which the transition time between adjacent items should not be too large to form frequent sequential patterns. A wide spectrum of applications can greatly benefit from such patterns, such as movement behavior analysis, targeted advertising, and POI recommendation. Improper releasing and use of such patterns could jeopardize the individually’s privacy, which motivates us to apply differential privacy to mining such patterns. It is a challenging task due to the inherent sequentiality and high complexity. Towards this end, we propose a two-phase algorithm PrivTS, which consists of sample-based filtering and count refining modules. The former takes advantage of an improved sparse vector technique to retrieve a set of potentially frequent sequential patterns. Utilizing this information, the latter computes their noisy supports and detects the final frequent patterns. Extensive experiments conducted on real-world datasets demonstrate that our approach maintains high utility while providing privacy guarantees.

Original languageEnglish
Title of host publicationDatabase Systems for Advanced Applications - 23rd International Conference, DASFAA 2018, Proceedings
EditorsJian Pei, Shazia Sadiq, Jianxin Li, Yannis Manolopoulos
PublisherSpringer Verlag
Pages92-111
Number of pages20
ISBN (Print)9783319914572
DOIs
Publication statusPublished - 2018
Event23rd International Conference on Database Systems for Advanced Applications, DASFAA 2018 - Gold Coast, Australia
Duration: 21 May 201824 May 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10828 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Database Systems for Advanced Applications, DASFAA 2018
Country/TerritoryAustralia
CityGold Coast
Period21/05/1824/05/18

Fingerprint

Dive into the research topics of 'PrivTS: Differentially private frequent time-constrained sequential pattern mining'. Together they form a unique fingerprint.

Cite this