Abstract
Formation of the elliptical-shaped craters on a silicon surface is investigated comprehensively using a single shot of a femtosecond laser. It is observed that the ablation craters are elongated along the major axis of the polarization direction, while their orientation is parallel to the polarization direction. The ablation area grows and the morphology of the craters evolves from an ellipse to nearly a circle with increasing fluence. The underlying physical mechanism is revealed through numerical simulations that are based on the finite-difference time-domain technique. It is suggested that the initially formed craters or surface defects lead to the redistribution of the electric field on the silicon surface, which plays a crucial role in the creation of the elliptical-shaped craters. In addition, the field intensity becomes enhanced along the incident laser polarization direction, which determines the elliptical crater orientations.
Original language | English |
---|---|
Pages (from-to) | 6742-6748 |
Number of pages | 7 |
Journal | Applied Optics |
Volume | 53 |
Issue number | 29 |
DOIs | |
Publication status | Published - 10 Oct 2014 |