TY - JOUR
T1 - PointGPT
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
AU - Chen, Guangyan
AU - Wang, Meiling
AU - Yang, Yi
AU - Yu, Kai
AU - Yuan, Li
AU - Yue, Yufeng
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Large language models (LLMs) based on the generative pre-training transformer (GPT) [46] have demonstrated remarkable effectiveness across a diverse range of downstream tasks. Inspired by the advancements of the GPT, we present PointGPT, a novel approach that extends the concept of GPT to point clouds, addressing the challenges associated with disorder properties, low information density, and task gaps. Specifically, a point cloud auto-regressive generation task is proposed to pre-train transformer models. Our method partitions the input point cloud into multiple point patches and arranges them in an ordered sequence based on their spatial proximity. Then, an extractor-generator based transformer decoder [27], with a dual masking strategy, learns latent representations conditioned on the preceding point patches, aiming to predict the next one in an auto-regressive manner. To explore scalability and enhance performance, a larger pre-training dataset is collected. Additionally, a subsequent post-pre-training stage is introduced, incorporating a labeled hybrid dataset. Our scalable approach allows for learning high-capacity models that generalize well, achieving state-of-the-art performance on various downstream tasks. In particular, our approach achieves classification accuracies of 94.9% on the ModelNet40 dataset and 93.4% on the ScanObjectNN dataset, outperforming all other transformer models. Furthermore, our method also attains new state-of-the-art accuracies on all four few-shot learning benchmarks. Codes are available at https://github.com/CGuangyan-BIT/PointGPT.
AB - Large language models (LLMs) based on the generative pre-training transformer (GPT) [46] have demonstrated remarkable effectiveness across a diverse range of downstream tasks. Inspired by the advancements of the GPT, we present PointGPT, a novel approach that extends the concept of GPT to point clouds, addressing the challenges associated with disorder properties, low information density, and task gaps. Specifically, a point cloud auto-regressive generation task is proposed to pre-train transformer models. Our method partitions the input point cloud into multiple point patches and arranges them in an ordered sequence based on their spatial proximity. Then, an extractor-generator based transformer decoder [27], with a dual masking strategy, learns latent representations conditioned on the preceding point patches, aiming to predict the next one in an auto-regressive manner. To explore scalability and enhance performance, a larger pre-training dataset is collected. Additionally, a subsequent post-pre-training stage is introduced, incorporating a labeled hybrid dataset. Our scalable approach allows for learning high-capacity models that generalize well, achieving state-of-the-art performance on various downstream tasks. In particular, our approach achieves classification accuracies of 94.9% on the ModelNet40 dataset and 93.4% on the ScanObjectNN dataset, outperforming all other transformer models. Furthermore, our method also attains new state-of-the-art accuracies on all four few-shot learning benchmarks. Codes are available at https://github.com/CGuangyan-BIT/PointGPT.
UR - http://www.scopus.com/inward/record.url?scp=85187431586&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85187431586
SN - 1049-5258
VL - 36
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
Y2 - 10 December 2023 through 16 December 2023
ER -