TY - GEN
T1 - Personalized geo-social group queries in location-based social networks
AU - Ma, Yuliang
AU - Yuan, Ye
AU - Wang, Guoren
AU - Bi, Xin
AU - Wang, Yishu
N1 - Publisher Copyright:
© Springer International Publishing AG, part of Springer Nature 2018.
PY - 2018
Y1 - 2018
N2 - Geo-social group query, one of the most important issues in LBSNs, combines both location and social factors to generate useful computational results, which is attracting increasing interests from both industrial and academic communities. In this paper, we propose a new type of queries, personalized geo-social group (PGSG) queries, which aim to retrieve both a user group and a venue. Specifically, a PGSG query intends to find a group-venue pattern (consisting of a venue and a group of users with size h), where each user in the group is socially connected with at least c other users in the group and the maximum distance of all the users in the group to the venue is minimized. To tackle the problem of the PGSG query, we propose GVPS, a novel search algorithm to find the optimal user group and venue simultaneously. Moreover, we extend the PGSG query to top-k personalized geo-social group (TkPGSG) query. Instead of finding the optimal solution in the PGSG query, the TkPGSG query is to return multiple feasibility solutions to guarantee the diversity. We propose an advanced search algorithm TkPH to address the TkPGSG query. Comprehensive experimental results demonstrate the efficiency and effectiveness of our proposed approaches in processing the PGSG query and the TkPGSG query on large real-world datasets.
AB - Geo-social group query, one of the most important issues in LBSNs, combines both location and social factors to generate useful computational results, which is attracting increasing interests from both industrial and academic communities. In this paper, we propose a new type of queries, personalized geo-social group (PGSG) queries, which aim to retrieve both a user group and a venue. Specifically, a PGSG query intends to find a group-venue pattern (consisting of a venue and a group of users with size h), where each user in the group is socially connected with at least c other users in the group and the maximum distance of all the users in the group to the venue is minimized. To tackle the problem of the PGSG query, we propose GVPS, a novel search algorithm to find the optimal user group and venue simultaneously. Moreover, we extend the PGSG query to top-k personalized geo-social group (TkPGSG) query. Instead of finding the optimal solution in the PGSG query, the TkPGSG query is to return multiple feasibility solutions to guarantee the diversity. We propose an advanced search algorithm TkPH to address the TkPGSG query. Comprehensive experimental results demonstrate the efficiency and effectiveness of our proposed approaches in processing the PGSG query and the TkPGSG query on large real-world datasets.
UR - http://www.scopus.com/inward/record.url?scp=85048053976&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-91452-7_26
DO - 10.1007/978-3-319-91452-7_26
M3 - Conference contribution
AN - SCOPUS:85048053976
SN - 9783319914510
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 388
EP - 405
BT - Database Systems for Advanced Applications - 23rd International Conference, DASFAA 2018, Proceedings
A2 - Manolopoulos, Yannis
A2 - Li, Jianxin
A2 - Sadiq, Shazia
A2 - Pei, Jian
PB - Springer Verlag
T2 - 23rd International Conference on Database Systems for Advanced Applications, DASFAA 2018
Y2 - 21 May 2018 through 24 May 2018
ER -