TY - JOUR
T1 - Perceiving informative key-points
T2 - A self-attention approach for person search
AU - Gao, Guangyu
AU - Han, Cen
AU - Liu, Zhen
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/2
Y1 - 2022/2
N2 - Though person re-identification has witnessed significant progress, person search, as a more practical task considering the unavailability of annotations of pedestrian bounding boxes, has progressed much slower because of less discriminative feature representation. To this end, we propose a novel self-attention based person search approach by perceiving informative implicit key-points with weak supervision. Firstly, we design the Self-attention Slice Part (SSP) module, to implicitly localize informative key-points by only taking a pre-defined number of points as supervision. Concretely, this module utilizes both channel-attention and spatial attention with weak supervision on partitioned pedestrian slices to get the most discriminative key-points. After that, we strengthen the self-attention weight for these cardinal key-points, and then, more robust feature representations for conducting person search can be obtained from these self-mined key-points. Meanwhile, the SSP also provides semantic alignment with the horizontally partitioned slices. Besides, to focus more on reducing the inner-class margin rather than enlarging inter-class distance, the Random Label Smooth (RLS) loss is defined for more robust classification. The RLS loss not only provides a larger margin hyperplane but also enhances the training efficiency. Therefore, all in all: (1) We propose an end-to-end person search framework by fully exploiting current object detection and person re-identification techniques jointly with weak supervision. (2) Our proposed weakly-supervised self-attention module is generic and can be plugged into any related tasks to improve the performance. (3) We conduct extensive experiments on popular benchmarks, including the dataset of CUHK-SYSU and PRW, and our approach outperforms most current state-of-the-art methods according to mAP and top-1 evaluation metrics.
AB - Though person re-identification has witnessed significant progress, person search, as a more practical task considering the unavailability of annotations of pedestrian bounding boxes, has progressed much slower because of less discriminative feature representation. To this end, we propose a novel self-attention based person search approach by perceiving informative implicit key-points with weak supervision. Firstly, we design the Self-attention Slice Part (SSP) module, to implicitly localize informative key-points by only taking a pre-defined number of points as supervision. Concretely, this module utilizes both channel-attention and spatial attention with weak supervision on partitioned pedestrian slices to get the most discriminative key-points. After that, we strengthen the self-attention weight for these cardinal key-points, and then, more robust feature representations for conducting person search can be obtained from these self-mined key-points. Meanwhile, the SSP also provides semantic alignment with the horizontally partitioned slices. Besides, to focus more on reducing the inner-class margin rather than enlarging inter-class distance, the Random Label Smooth (RLS) loss is defined for more robust classification. The RLS loss not only provides a larger margin hyperplane but also enhances the training efficiency. Therefore, all in all: (1) We propose an end-to-end person search framework by fully exploiting current object detection and person re-identification techniques jointly with weak supervision. (2) Our proposed weakly-supervised self-attention module is generic and can be plugged into any related tasks to improve the performance. (3) We conduct extensive experiments on popular benchmarks, including the dataset of CUHK-SYSU and PRW, and our approach outperforms most current state-of-the-art methods according to mAP and top-1 evaluation metrics.
KW - Key-points
KW - Person search
KW - Self-attention
KW - Weakly supervised
UR - http://www.scopus.com/inward/record.url?scp=85119582882&partnerID=8YFLogxK
U2 - 10.1016/j.image.2021.116558
DO - 10.1016/j.image.2021.116558
M3 - Article
AN - SCOPUS:85119582882
SN - 0923-5965
VL - 101
JO - Signal Processing: Image Communication
JF - Signal Processing: Image Communication
M1 - 116558
ER -