TY - JOUR
T1 - Penetration resistance of ceramic composite structures with a double arrowhead honeycombs interlayer against projectile impact
AU - Sun, Xin
AU - Zhang, Xingyuan
AU - Yan, Huan
AU - Zhang, Longhui
AU - Dong, Yongxiang
N1 - Publisher Copyright:
© 2025 Elsevier Ltd and Techna Group S.r.l.
PY - 2025
Y1 - 2025
N2 - A double arrowhead honeycomb (DAH) is a mechanical metamaterial with a high plateau strength. In this study, we optimized the DAH for incorporation into ceramic composite structures to improve the penetration resistance performance. For the same areal density, the penetration resistance performance of this ceramic composite structure with DAHs was 30 % higher than that of the structure without DAHs. Under high-velocity impact, the DAHs in the ceramic structure exhibited a row-by-row localized deformation, with several significant drops in the plateau strength and failure of each row corresponding to a drop. During the row-by-row deformation process, the loading was transferred downward row-by-row; consequently, the back plate remained undeformed until the DAHs were fully compacted, thus maintaining the integrity of the overall structure. Notably, the DAHs significantly prolonged the duration time of the projectile dwelling on the surface of the ceramic during the interface defeat process, thereby expanding the range of the loading distribution within the ceramic tiles and enhancing energy absorption. In addition, the downward-moving ceramic tiles exhibited further enhanced energy absorption by dispersing the kinetic energy of the projectile to the moving ceramic fragments. The penetration resistance mechanisms indicate that ceramic composite structures with DAHs are effective for optimizing lightweight, protective structures.
AB - A double arrowhead honeycomb (DAH) is a mechanical metamaterial with a high plateau strength. In this study, we optimized the DAH for incorporation into ceramic composite structures to improve the penetration resistance performance. For the same areal density, the penetration resistance performance of this ceramic composite structure with DAHs was 30 % higher than that of the structure without DAHs. Under high-velocity impact, the DAHs in the ceramic structure exhibited a row-by-row localized deformation, with several significant drops in the plateau strength and failure of each row corresponding to a drop. During the row-by-row deformation process, the loading was transferred downward row-by-row; consequently, the back plate remained undeformed until the DAHs were fully compacted, thus maintaining the integrity of the overall structure. Notably, the DAHs significantly prolonged the duration time of the projectile dwelling on the surface of the ceramic during the interface defeat process, thereby expanding the range of the loading distribution within the ceramic tiles and enhancing energy absorption. In addition, the downward-moving ceramic tiles exhibited further enhanced energy absorption by dispersing the kinetic energy of the projectile to the moving ceramic fragments. The penetration resistance mechanisms indicate that ceramic composite structures with DAHs are effective for optimizing lightweight, protective structures.
KW - Ceramic composite structure
KW - Double arrowhead honeycombs
KW - Interface defeat
KW - Penetration resistance
UR - http://www.scopus.com/inward/record.url?scp=85214585961&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2025.01.019
DO - 10.1016/j.ceramint.2025.01.019
M3 - Article
AN - SCOPUS:85214585961
SN - 0272-8842
JO - Ceramics International
JF - Ceramics International
ER -