PEK: A Parameter-Efficient Framework for Knowledge-Grounded Dialogue Generation

Pan Yang, Dandan Song*, Zhijing Wu, Yanru Zhou, Ziyi Yang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Pre-trained language models (PLMs) have shown great dialogue generation capability in different scenarios. However, the huge VRAM consumption when fine-tuning them is one of their drawbacks. PEFT approaches can significantly reduce the number of trainable parameters, which enables us to fine-tune larger dialogue generation models. However, the reduction in parameter quantity can diminish a PLM's expressive capacity and affect the PLM's learning from certain specific examples like knowledge-related conversations. Previous works have demonstrated that injecting external knowledge into dialogue generation models can improve the model's performance in knowledge-related conversations. Nonetheless, these methods are designed for the scenario where most parameters of the entire framework are trainable. In this paper, we propose PEK, a parameter-efficient framework for knowledge-enhanced dialogue generation. It enables PLMs to leverage external knowledge documents and knowledge graphs to enhance its generation capabilities with an acceptable number of trainable parameters. Evaluation results on the Wizard of Wikipedia and CMU_DoG datasets show that our approach outperforms baseline methods on multiple evaluation metrics, which validates the effectiveness of our approach.

Original languageEnglish
Title of host publication62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference
EditorsLun-Wei Ku, Andre Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages9261-9273
Number of pages13
ISBN (Electronic)9798891760998
Publication statusPublished - 2024
EventFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand
Duration: 11 Aug 202416 Aug 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

ConferenceFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityHybrid, Bangkok
Period11/08/2416/08/24

Fingerprint

Dive into the research topics of 'PEK: A Parameter-Efficient Framework for Knowledge-Grounded Dialogue Generation'. Together they form a unique fingerprint.

Cite this