PACE: Fully Parallelizable BFT from Reproposable Byzantine Agreement

Haibin Zhang, Sisi Duan*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

26 Citations (Scopus)

Abstract

The classic asynchronous Byzantine fault tolerance (BFT) framework of Ben-Or, Kemler, and Rabin (BKR) and its descendants rely on reliable broadcast (RBC) and asynchronous binary agreement (ABA). However, BKR does not allow all ABA instances to run in parallel, a well-known performance bottleneck. We propose PACE, a generic framework that removes the bottleneck, allowing fully parallelizable ABA instances. PACE is built on RBC and reproposable ABA (RABA). Different from the conventional ABA, RABA allows a replica to change its mind and vote twice. We show how to efficiently build RABA protocols from existing ABA protocols and a new ABA protocol that we introduce. We implement six new BFT protocols: three in the BKR framework, and three in the PACE framework. Via a deployment using 91 replicas on Amazon EC2 across five continents, we show that all PACE instantiations, in both failure-free and failure scenarios, significantly outperform their BKR counterparts, and prior BFT protocols such as BEAT and Dumbo, in terms of latency, throughput, latency vs. throughput, and scalability.

Original languageEnglish
Title of host publicationCCS 2022 - Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages3151-3164
Number of pages14
ISBN (Electronic)9781450394505
DOIs
Publication statusPublished - 7 Nov 2022
Event28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022 - Los Angeles, United States
Duration: 7 Nov 202211 Nov 2022

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Conference

Conference28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022
Country/TerritoryUnited States
CityLos Angeles
Period7/11/2211/11/22

Keywords

  • asynchronous bft
  • binary agreement
  • blockchain
  • fault tolerance
  • reproposable asynchronous binary agreement

Fingerprint

Dive into the research topics of 'PACE: Fully Parallelizable BFT from Reproposable Byzantine Agreement'. Together they form a unique fingerprint.

Cite this