Abstract
A novel Li-rich cathode Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (0.4Li2MnO3-0.6LiFe1/3Ni1/3Mn1/3O2) was synthesized by a sol-gel method, which uses citric acid (SC), tartaric acid (ST), or adipic acid (SA) as a chelating agent. The structural, morphological, and electrochemical properties of the prepared samples were characterized by various methods. X-ray diffraction showed that single-phase materials are formed mainly with typical α-NaFeO2 layered structure (R3¯m), and the SC sample has the lowest Li/Ni cation disorder. The morphological study indicated homogeneous primary particles in good distribution size (100 nm) with small aggregates. The Fe, Ni, and Mn valences were determined by X-ray absorption near-edge structure analysis. In coin cell tests, the initial reversible discharge capacity of an SA electrode was 289.7 mAh g-1 at the 0.1C rate in the 1.5-4.8 V voltage range, while an SC electrode showed a better cycling stability with relatively high capacity retention. At the 2C rate, the SC electrode can deliver a discharge capacity of 150 mAh g-1 after 50 cycles. Differential capacity vs voltage curves were employed to further investigate the electrochemical reactions and the structural change process during cycling. This low-cost, Fe-based compound prepared by the sol-gel method has the potential to be used as the high capacity cathode material for Li-ion batteries.
Original language | English |
---|---|
Pages (from-to) | 22305-22315 |
Number of pages | 11 |
Journal | ACS applied materials & interfaces |
Volume | 6 |
Issue number | 24 |
DOIs | |
Publication status | Published - 24 Dec 2014 |
Keywords
- Fe-based
- cathode material
- lithium-ion battery
- lithium-rich
- low-cost
- sol-gel method