Optimal fuzzy control of a semi-active suspension of a full-vehicle model using MR dampers

Hao Wang*, Haiyan Hu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

MR (Magneto-Rheological) dampers have turned out to be a promising device for improving the ride comfort of ground vehicles. However, the current control algorithms for MR dampers, including on-off control and clipped-optimal control, are not sufficiently effective. This paper presents a fuzzy control strategy for an MR damper in order to determine the input voltage according to the desired restoring force. It then goes on using this new strategy to reduce the suspension vibration of a full-vehicle model equipped with 4 MR dampers, where the desired restoring forces are determined through the optimal control of suspension system. The numerical simulations indicate that the optimal fuzzy control can effectively reduce the suspension vibration of the full-vehicle model, especially the pitch angular acceleration and the roll angular acceleration of the sprung mass, and offers better ride comfort, running safety and handling stability than the clipped-optimal control. The design of the fuzzy controller is independent of the control system. Furthermore, fuzzy controller can also be extended to other applications of MR dampers, together with other control strategies.

Original languageEnglish
Pages (from-to)1513-1519
Number of pages7
JournalInternational Journal of Modern Physics B
Volume19
Issue number7-9
DOIs
Publication statusPublished - 10 Apr 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Optimal fuzzy control of a semi-active suspension of a full-vehicle model using MR dampers'. Together they form a unique fingerprint.

Cite this