On the Approximation of Nash Equilibria in Sparse Win-Lose Multi-player Games

Zhengyang Liu, Jiawei Li, Xiaotie Deng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

A polymatrix game is a multi-player game over n players, where each player chooses a pure strategy from a list of its own pure strategies. The utility of each player is a sum of payoffs it gains from the two player’s game from all its neighbors, under its chosen strategy and that of its neighbor. As a natural extension to two-player games (a.k.a. bimatrix games), polymatrix games are widely used for multi-agent games in real world scenarios. In this paper we show that the problem of approximating a Nash equilibrium in a polymatrix game within the polynomial precision is PPAD-hard, even in sparse and win-lose ones. This result further challenges the predictability of Nash equilibria as a solution concept in the multi-agent setting. We also propose a simple and efficient algorithm, when the game is further restricted. Together, we establish a new dichotomy theorem for this class of games. It is also of independent interest for exploring the computational and structural properties in Nash equilibria.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages5557-5565
Number of pages9
ISBN (Electronic)9781713835974
Publication statusPublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume6B

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/02/219/02/21

Fingerprint

Dive into the research topics of 'On the Approximation of Nash Equilibria in Sparse Win-Lose Multi-player Games'. Together they form a unique fingerprint.

Cite this