Abstract
Nanoporous graphenes (NPGs) have recently attracted huge attention owing to their designable structures and diverse properties. Many important properties of NPGs are determined by their structural regularity and homogeneity. The mass production of NPGs with periodic well-defined pore structures under a solvent-free green synthesis poses a great challenge and is largely unexplored. A facile synthetic strategy of NPGs via pressing organization calcination (POC) of readily available halogenated polycyclic aromatic hydrocarbons is developed. The gram-scale synthesized NPGs have ordered structures and possess well-defined nanopores, which can be easily exfoliated to few layers and oxidized in controllable approaches. After being decorated with oxygen species, the oxidized NPGs with tunable catalytic centers exhibit high activity, selectivity, and stability toward electrochemical hydrogen peroxide generation.
Original language | English |
---|---|
Pages (from-to) | 47478-47487 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 13 |
Issue number | 40 |
DOIs | |
Publication status | Published - 13 Oct 2021 |
Keywords
- calcination
- electrocatalysis
- hydrogen peroxide
- nanoporous graphenes
- pressing organization