@inproceedings{fb28423d395349b3987e03822012e1ee,
title = "MTNAS: Search Multi-task Networks for Autonomous Driving",
abstract = "Multi-task learning (MTL) aims to learn shared representations from multiple tasks simultaneously, which has yielded outstanding performance in widespread applications of computer vision. However, existing multi-task approaches often demand manual design on network architectures, including shared backbone and individual branches. In this work, we propose MTNAS, a practical and principled neural architecture search algorithm for multi-task learning. We focus on searching for the overall optimized network architecture with task-specific branches and task-shared backbone. Specifically, the MTNAS pipeline consists of two searching stages: branch search and backbone search. For branch search, we separately optimize each branch structure for each target task. For backbone search, we first design a pre-searching procedure t1o pre-optimize the backbone structure on ImageNet. We observe that searching on such auxiliary large-scale data can not only help learn low-/mid-level features but also offer good initialization of backbone structure. After backbone pre-searching, we further optimize the backbone structure for learning task-shared knowledge under the overall multi-task guidance. We apply MTNAS to joint learning of object detection and semantic segmentation for autonomous driving. Extensive experimental results demonstrate that our searched multi-task model achieves superior performance for each task and consumes less computation complexity compared to prior hand-crafted MTL baselines. Code and searched models will be released at https://github.com/RalphLiu/MTNAS.",
keywords = "Autonomous driving, Multi-task learning, Neural architecture search",
author = "Hao Liu and Dong Li and Peng, {Jin Zhang} and Qingjie Zhao and Lu Tian and Yi Shan",
note = "Publisher Copyright: {\textcopyright} 2021, Springer Nature Switzerland AG.; 15th Asian Conference on Computer Vision, ACCV 2020 ; Conference date: 30-11-2020 Through 04-12-2020",
year = "2021",
doi = "10.1007/978-3-030-69535-4_41",
language = "English",
isbn = "9783030695347",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "670--687",
editor = "Hiroshi Ishikawa and Cheng-Lin Liu and Tomas Pajdla and Jianbo Shi",
booktitle = "Computer Vision – ACCV 2020 - 15th Asian Conference on Computer Vision, 2020, Revised Selected Papers",
address = "Germany",
}