Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning

Ping Li, Jiazhen Li, Xiao Feng, Jie Li, Yuchen Hao, Jinwei Zhang, Hang Wang, Anxiang Yin, Junwen Zhou, Xiaojie Ma*, Bo Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

614 Citations (Scopus)

Abstract

Air filtration has become an essential need for passive pollution control. However, most of the commercial air purifiers rely on dense fibrous filters, which have good particulate matter (PM) removal capability but poor biocidal effect. Here we present the photocatalytic bactericidal properties of a series of metal-organic frameworks (MOFs) and their potentials in air pollution control and personal protection. Specifically, a zinc-imidazolate MOF (ZIF-8) exhibits almost complete inactivation of Escherichia coli (E. coli) (>99.9999% inactivation efficiency) in saline within 2 h of simulated solar irradiation. Mechanistic studies indicate that photoelectrons trapped at Zn+ centers within ZIF-8 via ligand to metal charge transfer (LMCT) are responsible for oxygen-reduction related reactive oxygen species (ROS) production, which is the dominant disinfection mechanism. Air filters fabricated from ZIF-8 show remarkable performance for integrated pollution control, with >99.99% photocatalytic killing efficiency against airborne bacteria in 30 min and 97% PM removal. This work may shed light on designing new porous solids with photocatalytic antibiotic capability for public health protection.

Original languageEnglish
Article number2177
JournalNature Communications
Volume10
Issue number1
DOIs
Publication statusPublished - 1 Dec 2019

Fingerprint

Dive into the research topics of 'Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning'. Together they form a unique fingerprint.

Cite this