Abstract
We report a systematic angle-resolved photoemission spectroscopy on topological insulator (TI) TlBi1-xSbxTe2 which is bulk insulating at 0.5 x 0.9 and undergoes a metal-insulator-metal transition with the Sb content x. We found that this transition is characterized by a systematic hole doping with increasing x, which results in the Fermi-level crossings of the bulk conduction and valence bands at x∼0 and x∼1, respectively. The Dirac point of the topological surface state is gradually isolated from the valence-band edge, accompanied by a sign reversal of Dirac carriers. We also found that the Dirac velocity is the largest among known solid-solution TI systems. The TlBi1-xSbxTe2 system thus provides an excellent platform for Dirac-cone engineering and device applications of TIs.
Original language | English |
---|---|
Article number | 165123 |
Journal | Physical Review B |
Volume | 93 |
Issue number | 16 |
DOIs | |
Publication status | Published - 18 Apr 2016 |
Externally published | Yes |