Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system

Yan Sun, Shuting Xu, Zheqi Xu, Jiamin Tian, Mengmeng Bai, Zhiying Qi, Yue Niu, Hein Htet Aung, Xiaolu Xiong, Junfeng Han, Cuicui Lu, Jianbo Yin, Sheng Wang, Qing Chen, Reshef Tenne, Alla Zak*, Yao Guo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Intelligent materials with adaptive response to external stimulation lay foundation to integrate functional systems at the material level. Here, with experimental observation and numerical simulation, we report a delicate nano-electro-mechanical-opto-system naturally embedded in individual multiwall tungsten disulfide nanotubes, which generates a distinct form of in-plane van der Waals sliding ferroelectricity from the unique combination of superlubricity and piezoelectricity. The sliding ferroelectricity enables programmable photovoltaic effect using the multiwall tungsten disulfide nanotube as photovoltaic random-access memory. A complete “four-in-one” artificial vision system that synchronously achieves full functions of detecting, processing, memorizing, and powering is integrated into the nanotube devices. Both labeled supervised learning and unlabeled reinforcement learning algorithms are executable in the artificial vision system to achieve self-driven image recognition. This work provides a distinct strategy to create ferroelectricity in van der Waals materials, and demonstrates how intelligent materials can push electronic system integration at the material level.

Original languageEnglish
Article number5391
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system'. Together they form a unique fingerprint.

Cite this