Mechanical properties of 2-D lattice materials

Yi Hui Zhang*, Xin Ming Qiu, Dai Ning Fang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Lattice structures have ranges of thermo-mechanical properties that suggest their implementation in ultralight structures, as well as for impact/blast amelioration systems and heat dissipation media. Considering that proper anisotropy of structure could increase load efficiency, two kinds of 2-D lattice materials designable in specific stiffness and strength of arbitrary direction have been brought forward: variational thickness cell and variational direction cell. The mechanical properties of variational thickness Kagome cell have been analyzed, including effective elastic modulus, yield strength and elastic buckling strength in arbitrary directions. Since the shear buckling of 2-D lattice materials is an important collapse mode especially when relative densities are low, shear buckling strength of various 2-D lattice materials have also been calculated. It is found that compared with the diamond cell, the variational thickness Kagome cell of thickness ratio, m=0.5, possesses the same elastic modulus and yield surface, and higher buckling strength.

Original languageEnglish
Title of host publicationAdvances in Fracture and Materials Behavior - Selected, peer reviewed papers of the Seventh International Conference on Fracture and Strength of Solids (FEOFS2007)
PublisherTrans Tech Publications
Pages585-590
Number of pages6
ISBN (Print)0878493999, 9780878493999
DOIs
Publication statusPublished - 2008
Externally publishedYes
Event7th International Conference on Fracture and Strength of Solids, FEOFS 2007 - Urumqi, China
Duration: 27 Aug 200729 Aug 2007

Publication series

NameAdvanced Materials Research
Volume33-37 PART 1
ISSN (Print)1022-6680

Conference

Conference7th International Conference on Fracture and Strength of Solids, FEOFS 2007
Country/TerritoryChina
CityUrumqi
Period27/08/0729/08/07

Keywords

  • Lattice
  • Mechanical properties
  • Ultralight

Fingerprint

Dive into the research topics of 'Mechanical properties of 2-D lattice materials'. Together they form a unique fingerprint.

Cite this