TY - GEN
T1 - MA-Net
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
AU - Han, Mengqiao
AU - Pan, Liyuan
AU - Liu, Xiabi
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - The artificial neuron (N-N) model-based networks have accomplished extraordinary success for various vision tasks. However, as a simplification of the mammal neuron model, their structure is locked during training, resulting in overfitting and over-parameters. The astrocyte, newly explored by biologists, can adaptively modulate neuronal communication by inserting itself between neurons. The communication, between the astrocyte and neuron, is bidirectional and shows the potential to alleviate issues raised by unidirectional communication in the N-N model. In this paper, we first elaborate on the artificial Multi-Astrocyte-Neuron (MA-N) model, which enriches the functionality of the artificial neuron model. Our MA-N model is formulated at both astrocyte- and neuron-level that mimics the bidirectional communication with temporal and joint mechanisms. Then, we construct the MA-Net network with the MA-N model, whose neural connections can be continuously and adaptively modulated during training. Experiments show that our MA-Net advances new state-of-the-art on multiple tasks while significantly reducing its parameters by connection optimization.
AB - The artificial neuron (N-N) model-based networks have accomplished extraordinary success for various vision tasks. However, as a simplification of the mammal neuron model, their structure is locked during training, resulting in overfitting and over-parameters. The astrocyte, newly explored by biologists, can adaptively modulate neuronal communication by inserting itself between neurons. The communication, between the astrocyte and neuron, is bidirectional and shows the potential to alleviate issues raised by unidirectional communication in the N-N model. In this paper, we first elaborate on the artificial Multi-Astrocyte-Neuron (MA-N) model, which enriches the functionality of the artificial neuron model. Our MA-N model is formulated at both astrocyte- and neuron-level that mimics the bidirectional communication with temporal and joint mechanisms. Then, we construct the MA-Net network with the MA-N model, whose neural connections can be continuously and adaptively modulated during training. Experiments show that our MA-Net advances new state-of-the-art on multiple tasks while significantly reducing its parameters by connection optimization.
UR - http://www.scopus.com/inward/record.url?scp=85189295104&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i3.27975
DO - 10.1609/aaai.v38i3.27975
M3 - Conference contribution
AN - SCOPUS:85189295104
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 2040
EP - 2048
BT - Technical Tracks 14
A2 - Wooldridge, Michael
A2 - Dy, Jennifer
A2 - Natarajan, Sriraam
PB - Association for the Advancement of Artificial Intelligence
Y2 - 20 February 2024 through 27 February 2024
ER -