TY - JOUR
T1 - Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries
AU - Fu, Jiale
AU - Ji, Xiao
AU - Chen, Ji
AU - Chen, Long
AU - Fan, Xiulin
AU - Mu, Daobin
AU - Wang, Chunsheng
N1 - Publisher Copyright:
© 2020 Wiley-VCH GmbH
PY - 2020/12/1
Y1 - 2020/12/1
N2 - The electrolytes in lithium metal batteries have to be compatible with both lithium metal anodes and high voltage cathodes, and can be regulated by manipulating the solvation structure. Herein, to enhance the electrolyte stability, lithium nitrate (LiNO3) and 1,1,2,2-tetrafuoroethyl-2′,2′,2′-trifuoroethyl(HFE) are introduced into the high-concentration sulfolane electrolyte to suppress Li dendrite growth and achieve a high Coulombic efficiency of >99 % for both the Li anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Molecular dynamics simulations show that NO3− participates in the solvation sheath of lithium ions enabling more bis(trifluoromethanesulfonyl)imide anion (TFSI−) to coordinate with Li+ ions. Therefore, a robust LiNxOy−LiF-rich solid electrolyte interface (SEI) is formed on the Li surface, suppressing Li dendrite growth. The LiNO3-containing sulfolane electrolyte can also support the highly aggressive LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode, delivering a discharge capacity of 190.4 mAh g−1 at 0.5 C for 200 cycles with a capacity retention rate of 99.5 %.
AB - The electrolytes in lithium metal batteries have to be compatible with both lithium metal anodes and high voltage cathodes, and can be regulated by manipulating the solvation structure. Herein, to enhance the electrolyte stability, lithium nitrate (LiNO3) and 1,1,2,2-tetrafuoroethyl-2′,2′,2′-trifuoroethyl(HFE) are introduced into the high-concentration sulfolane electrolyte to suppress Li dendrite growth and achieve a high Coulombic efficiency of >99 % for both the Li anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Molecular dynamics simulations show that NO3− participates in the solvation sheath of lithium ions enabling more bis(trifluoromethanesulfonyl)imide anion (TFSI−) to coordinate with Li+ ions. Therefore, a robust LiNxOy−LiF-rich solid electrolyte interface (SEI) is formed on the Li surface, suppressing Li dendrite growth. The LiNO3-containing sulfolane electrolyte can also support the highly aggressive LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode, delivering a discharge capacity of 190.4 mAh g−1 at 0.5 C for 200 cycles with a capacity retention rate of 99.5 %.
KW - electrolytes
KW - interphases
KW - lithium nitrate
KW - lithium-metal batteries
KW - solvation structure
UR - http://www.scopus.com/inward/record.url?scp=85091611552&partnerID=8YFLogxK
U2 - 10.1002/anie.202009575
DO - 10.1002/anie.202009575
M3 - Article
C2 - 32841474
AN - SCOPUS:85091611552
SN - 1433-7851
VL - 59
SP - 22194
EP - 22201
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 49
ER -