Lidar-based traversable region detection in off-road environment

Tong Liu, Dongyu Liu, Yi Yang, Zhaowei Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

Traversable region detection is a fundamental problem in the field of autonomous driving. This paper proposes a fast method to detect obstacles and obtain the traversable region in the off-road environment. Our method takes advantage of both radial features and transverse features based on the high definition of 3D Lidar points. First, we manage Lidar points by scanning lines and sectors in the polar system at the same time. Then the most obstacles can be quickly detected by using radial features in the polar system. For the false detection, transverse features are applied to verify the results. Finally, the constrained region within the nearest obstacle points in each sector defines the traversable region around the vehicle. Our method can detect positive obstacles, negative obstacles, and hanging obstacles in real-time. The experimental results show the robustness and accuracy of the proposed method in different kinds of off-road environments.

Original languageEnglish
Title of host publicationProceedings of the 38th Chinese Control Conference, CCC 2019
EditorsMinyue Fu, Jian Sun
PublisherIEEE Computer Society
Pages4548-4553
Number of pages6
ISBN (Electronic)9789881563972
DOIs
Publication statusPublished - Jul 2019
Event38th Chinese Control Conference, CCC 2019 - Guangzhou, China
Duration: 27 Jul 201930 Jul 2019

Publication series

NameChinese Control Conference, CCC
Volume2019-July
ISSN (Print)1934-1768
ISSN (Electronic)2161-2927

Conference

Conference38th Chinese Control Conference, CCC 2019
Country/TerritoryChina
CityGuangzhou
Period27/07/1930/07/19

Keywords

  • 3D Lidar
  • Obstacles Detection
  • Off-road Environment
  • Traversable Region Detection

Fingerprint

Dive into the research topics of 'Lidar-based traversable region detection in off-road environment'. Together they form a unique fingerprint.

Cite this