TY - JOUR
T1 - Layerwise replacement method to achieve high solar-to-hydrogen efficiency for photocatalytic water splitting
T2 - a first principles study
AU - Quan, Chuye
AU - Ji, Shilei
AU - Yao, Ruijia
AU - Du, Ming
AU - Chen, Chen
AU - He, Xiaoyang
AU - Cai, Ran
AU - Yang, Jianping
AU - Li, Xing'ao
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/8/8
Y1 - 2024/8/8
N2 - Atomically layered stacking (ALS) two-dimensional (2D) materials, owing to their superior electrical properties and flexible tunability in addition to the advantages of traditional 2D materials, have garnered widespread attention in recent years. However, when used as photocatalysts for overall water splitting (OWS), many of them face challenges like low Solar-to-Hydrogen (STH) efficiency and insufficient driving force for photoinduced redox reactions. Here, using Al2X3 (X = S, Se) as samples, we demonstrate the potential of the Layerwise Replacement Method (LRM) in reducing the materials' bandgap, improving their light absorption performance, and boosting the STH efficiency. As anticipated, the Al2S2Se-t and Al2TeSe2-m monolayers demonstrate STH efficiencies exceeding 20%, surpassing the performance of the majority of reported photocatalysts. Additionally, under light excitation, the OER reaction on the Al2S2Se-t monolayer is exothermic, while on the Al2TeSe2-m monolayer, the OER energy barrier is reduced to 0.431 eV. Notably, on both materials, the HER energy barriers are approaching 0 eV. The improvement of these properties is primarily ascribed to the modulation of the materials' bandgap via the LRM, and secondarily to the reconstruction of the vertically intrinsic electric field (IEF). Our work not only offers a fresh perspective for the precise manipulation of atomically layered stacked 2D materials but also provides a rational strategy for designing novel and outstanding photocatalysts.
AB - Atomically layered stacking (ALS) two-dimensional (2D) materials, owing to their superior electrical properties and flexible tunability in addition to the advantages of traditional 2D materials, have garnered widespread attention in recent years. However, when used as photocatalysts for overall water splitting (OWS), many of them face challenges like low Solar-to-Hydrogen (STH) efficiency and insufficient driving force for photoinduced redox reactions. Here, using Al2X3 (X = S, Se) as samples, we demonstrate the potential of the Layerwise Replacement Method (LRM) in reducing the materials' bandgap, improving their light absorption performance, and boosting the STH efficiency. As anticipated, the Al2S2Se-t and Al2TeSe2-m monolayers demonstrate STH efficiencies exceeding 20%, surpassing the performance of the majority of reported photocatalysts. Additionally, under light excitation, the OER reaction on the Al2S2Se-t monolayer is exothermic, while on the Al2TeSe2-m monolayer, the OER energy barrier is reduced to 0.431 eV. Notably, on both materials, the HER energy barriers are approaching 0 eV. The improvement of these properties is primarily ascribed to the modulation of the materials' bandgap via the LRM, and secondarily to the reconstruction of the vertically intrinsic electric field (IEF). Our work not only offers a fresh perspective for the precise manipulation of atomically layered stacked 2D materials but also provides a rational strategy for designing novel and outstanding photocatalysts.
UR - http://www.scopus.com/inward/record.url?scp=85201073406&partnerID=8YFLogxK
U2 - 10.1039/d4cy00688g
DO - 10.1039/d4cy00688g
M3 - Article
AN - SCOPUS:85201073406
SN - 2044-4753
VL - 14
SP - 5644
EP - 5652
JO - Catalysis Science and Technology
JF - Catalysis Science and Technology
IS - 19
ER -